
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Summer 2011

Software architecture of the non-rigid image registration Software architecture of the non-rigid image registration

evaluation project evaluation project

Jeffrey Allan Hawley
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright 2011 Jeffrey Hawley

This thesis is available at Iowa Research Online: https://ir.uiowa.edu/etd/1229

Recommended Citation Recommended Citation
Hawley, Jeffrey Allan. "Software architecture of the non-rigid image registration evaluation project." MS
(Master of Science) thesis, University of Iowa, 2011.
https://doi.org/10.17077/etd.imntztcj

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.imntztcj
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

SOFTWARE ARCHITECTURE OF THE NON-RIGID IMAGE REGISTRATION

EVALUATION PROJECT

by

Jeffrey Allan Hawley

A thesis submitted in partial fulfillment of the
requirements for the Master of Science

degree in Electrical and Computer Engineering
in the Graduate College of
The University of Iowa

July 2011

Thesis Supervisor: Professor Gary E. Christensen

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Jeffrey Allan Hawley

has been approved by the Examining Committee for the
thesis requirement for the Master of Science degree in
Electrical and Computer Engineering at the July 2011
graduation.

Thesis Committee:

Gary E. Christensen, Thesis Supervisor

Hans Johnson

Jon Kuhl

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to acknowledge all those who have helped on the NIREP project:

John S. Allen, Joel Bruss, Gary E. Christensen, Halim Choi, Hanna Damasio, Xiujuan

Geng, Thomas J. Grabowski, James Harris, Hans Johnson, Jon G. Kuhl, Imran A.

Pirwani, Kate Raising, David Rudrauf, Joo Hyun Song, Michael W. Vannier, Ying

Wei, and Cheng Zhang.

I would like to acknowledge Gary Christensen for giving me a job as an un-

dergraduate which grew into obtaining my Master’s. The knowledge gained from

working on NIREP and the talks with Gary is priceless. As well, all the help and

effort that Gary has done to help me obtain my Master’s, I will never forget. Thank

you Gary Christensen.

I would like to also acknowledge my family who raised me, helped me with

my school work, dealt with my changing moods while writing the thesis and finally

helping read over the thesis. Writing is not my strong suit but with your help, you

have helped me overcome and persevere. I may not say this all the time but thank

you, I love you.

ii

www.manaraa.com

TABLE OF CONTENTS

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 NIREP DESIGN . 8

2.1 Requirements . 8
2.1.1 Program Input . 8
2.1.2 Evaluation Methods . 9
2.1.3 Visualization . 18
2.1.4 Visualization Interactions 22
2.1.5 Quantitative Analysis . 23
2.1.6 Display Layout . 24
2.1.7 Additional Requirements 27

2.2 NIREP Software Design . 27
2.2.1 Interface . 28
2.2.2 Data Manager . 30
2.2.3 Evaluator . 31
2.2.4 Display Manager . 39
2.2.5 NIREP Display Description Document 42

3 IMPLEMENTATION . 55

3.1 Data Manager . 55
3.2 Display Manager . 56

3.2.1 Supporting classes . 57
3.3 Evaluator . 69

3.3.1 Supporting classes . 70
3.4 Interface . 73

3.4.1 Supporting Classes . 74
3.5 Display Description . 74

4 FUTURE AND SUMMARY . 77

APPENDIX A. NIREP USER MANUAL . 79

A.1 Overview . 80
A.2 Background . 80
A.3 System Requirements . 81
A.4 Acquire NIREP software . 82

iii

www.manaraa.com

A.5 Before you use NIREP . 82
A.6 Quick View . 84
A.7 Edit Resource Description List 84
A.8 Resource Description List . 99
A.9 Display Attributes . 99
A.10 Variable List . 100
A.11 Widget List . 100
A.12 Evaluator List . 108
A.13 Data . 109
A.14 Transformation . 109

A.14.1 3D image file formats: . 112
A.14.2 Transformation file formats: 112
A.14.3 Requirements . 112

REFERENCES . 113

iv

www.manaraa.com

LIST OF FIGURES

Figure

2.1 Regular 4 rows and 4 columns grid before being transformed. 14

2.2 Grid from figure 2.1 after it has been transformed. The figure shows
how the transformation, transforms straight lines and to a degree how the
transformation looks like. 15

2.3 Vector plot before being transformed. As can be seen, there are only points
in the vector plot but no vectors. If the transformation is the identity then
this image is what should be shown. 16

2.4 Vector plot is shown after being transformed. As can be seen, there are
vectors pointing away from the points in the image. The vector plot shows
the transformation. 16

2.5 Rough sketch of a Checkerboard view. The view takes in two images,
which are overlaid on top of each other. The white squares correspond to
a portion of image 1 being visible but not image 2 and the black squares
correspond to a portion of image 2 being visible and not image 1. 20

2.6 Rough sketch of Wipe view. The view takes in two images, which are
overlaid on top of each other. The white squares correspond to a portion
of image 1 being visible but not image 2 and the black squares correspond
to a portion of image 2 being visible and not image 1. The user can grab
the boundaries and wipe across the two images. 21

2.7 Grid layout showing a 3 column and 3 row of two images being evaluated
using difference. The grid has titles for both the row and columns, ex-
plaining what is happening in the grid. Each of the rows are depicting
one of the three orientations that are possible within NIREP. Each of the
columns are depicting the first image, the difference of image 1 and image
2 and image 2. Within each of the views are different objects that are
be within the images. For the difference column, for the first row, it can
be seen that the rectangle is shown but not the circle because the circle’s
completely overlap in image 1 and image 2. For the difference column, for
the second row, it can be seen that the rectangle in image 1 and rectangle
in image 2 do not align at all and so both rectangles are shown in the dif-
ference. For the difference column, for the third row, it can be seen that
the circle of image 1 and rectangle of image 2 overlap each other however
the rectangle of image 2 overlaps more then just the circle, so some of the
rectangle are shown. 26

v

www.manaraa.com

2.8 Use case for the Interface. The use case goes over a user opening NIREP
for the first time. 29

2.9 Class diagram for the Interface. The Interface has a reference to the
DataManger, the Evaluator and to the DisplayManager’s. 29

2.10 Sequence diagram for the Interface. The sequence diagram follows the use
case of a user opening NIREP for the first time. 30

2.11 Class diagram for the Data Manager. The Data Manager keeps track of
all the data that NIREP needs to use. To keep track of the data, the Data
Manager needs a reference to 0 to as many specified DataObjects. . . . 32

2.12 Use case for the Difference Evaluator Task. The use case goes over a
typical request for an evaluation task, such as the Difference. 35

2.13 Class diagram for the Evaluator. The Evaluator has references to the
DataManager and EvaluatorTasks. All evaluator tasks, such as Difference,
RelativeOverlap, Transitivity Error, will inherit from EvaluatorTask so
that the program can use polymorphism. 36

2.14 Sequence diagram for the Evaluator. The sequence diagram follows the
use case of a typical request for an evaluation task, such as the Difference. 38

2.15 Use case for the DisplayManager. The use case is for a user displaying a
2D viewer from the interface, using a display description. 41

2.16 Class diagram for the Display Manager. 43

2.17 Sequence diagram for the evaluator use case, which is the user displaying
a 2D viewer from the interface using a display description. 44

2.18 Class diagram for the Display Description. The Display Description is
composed of the EvaluatorList, WidgetList, VariableList, Display At-
tributes and ResourceDescriptionList. The Display Description is a copy
of the ND3 file but read into memory. 45

3.1 Checkerboard view widget, of two images na01 and na01. This is showing
when two images align perfectly, the checkerboard view widget will look
like one image. 58

3.2 Checkerboard view widget of two images na01 and na02. This is showing
two images being evaluated, using the Checkerboard view widget, before
registration. As can be seen along the borders, the two images do not
align perfectly. 58

vi

www.manaraa.com

3.3 Checkerboard view widget of two images na01 and demons na01 def na02.
This is showing one image and one transformation being evaluated using
the Checkerboard view widget. As can be seen along the borders, the two
images do not align perfectly. 59

3.4 Panel selector GUI within NIREP. The panel selector GUI allows a user to
select which panel they want to modify by putting in the row and column
of the panel. 60

3.5 Grid view widget within NIREP. The grid shows how a registration trans-
forms straight lines. 60

3.6 Edit Display Variables GUI within NIREP. The Edit Display Variables
GUI allows a user to edit the values associated with a variable within a
Display Description. 61

3.7 View widget. In this figure the na01 brain image is being displayed in the
Coronal orientation. 63

3.8 PairwiseComparison GUI. The PairwiseComparison GUI allows a user to
select an RDL file, the namespace, modality, image1 and image2. When
the user hits Ok, a 3x3 grid will appear allowing the user to evaluate the
two images using the difference. 64

3.9 PanelForm GUI. The PanelForm GUI allows the user to make changes to
the current Panel. The user can can change the view/widget, the orienta-
tion, the input images, the color map, the title of the Panel, and even the
attributes of the title. 66

3.10 VectorField view widget. The VectorField shows what a transformation
looks like by using vectors to describe how the points in a grid are moved. 67

3.11 Wipe view, of two images n01 and na01. This is showing when two images
align perfectly, the Wipe view widget will look like one image. The user
is allowed to wipe across to find where the two images do not align along
the borders. 68

3.12 Wipe view widget of two images na01 and na02. This is showing two
images being evaluated, using the Wipe view widget, before registration.
The user is allowed to wipe across to find where the two images do not
align along the borders. As can be seen along the borders, the two images
do not align perfectly. 68

vii

www.manaraa.com

3.13 Wipe view widget of two images na01 and demons na01 def na02. This
is showing one image and one transformation being evaluated using the
Wipe view widget. The user is allowed to wipe across to find where the two
images do not align along the borders. As can be seen along the borders,
the two images do not align perfectly. 69

3.14 Image Flip GUI. The Image Flip GUI allows users to change the acquisition
orientation of the image, flip the images based on I-S, R-L, and A-P. . . 70

viii

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

In medical image registration the goal is to find point by point correspon-

dences between a source image and a target image such that the two images are

aligned. There are rigid and non-rigid registration algorithms. Rigid registration

uses rigid transformation methods which preserve distances between every pair of

points. Non-rigid registration uses transformation methods that do not have to pre-

serve the distances. Image registration has many medical applications -tracking tu-

mors, anatomical changes over time, differences between characteristics like age and

gender, etc. A gold standard transformation to compare and evaluate the registra-

tion algorithms would be ideal to use to verify if the two images are perfectly aligned.

However, there is hardly if ever a gold standard transformation for non-rigid registra-

tion algorithms. The reason why there is no gold standard transformation for non-

rigid registration algorithms is that pointwise correspondence between two registered

points is not unique. In the absence of a gold standard various evaluation methods

are used to gauge registration performance. However, each evaluation method only

evalutes the error in the transformation from a limited perspective and therefore has

its advantages and drawbacks. The Non-Rigid Image Registration Evaluation Project

(NIREP) was was created to provide one central tool that has a collection of evalu-

ation methods to perform the evaluations on non-rigid image registration algorithms

and rank the registration algorithms based on the outputs of the evaluation methods

www.manaraa.com

2

in the absence of without having to use a gold standard. NIREP utilizes the following

examples of evaluations of both rigid and non-rigid image registrations done over the

years.

In the “Evaluation of 14 nonlinear deformation algorithms applied to human

brain MRI registration”[11] study the author, Arno Klein, evaluated 14 nonlinear

deformation algorithms applied to T1-weighted MRI brain image’s using 8 different

error measures. The authors started the study by performing the 14 algorithms over

the brain images. Then they applied the 8 different error measures on the outputs of

the deformation algorithms. Finally, they ranked the results of the evaluations based

on permutation tests, one-way ANOVA tests and indifference-zone ranking.

The study only used one modality, T1-weighted MRI, brain data but there

are other modalities such as PET, CT, T2-weighted MRI, PD-weighted MRI, etc.

NIREP will provide a framework to support multiple modalities. They also did com-

parison of labels, which assumed that the “manual labels sets are correct, or ‘silver

standards’.” Manual labels have an inherent human error which if they are used as

a standard, relegates them to a silver standard and not a “gold standard”. NIREP

will support labels and the corresponding evaluation methods. As well, they left

out some algorithms partly because using them requires considerable knowledge of

the software, partly because some were semi-automated approaches that require even

minimal intervention to reduce bias. NIREP will have users perform their own reg-

istration algorithms outside of NIREP and then use NIREP to do the evaluation.

Finally, they showed three ways to rank registration algorithms based on the evalu-

www.manaraa.com

3

ation methods. NIREP will rank registration algorithms and can use the study as

a reference. The study show’s how an evaluation can be done for non-rigid image

algorithms and that there is a need for an automated program to evaluate and rank

non-rigid image registration algorithms.

In “Comparison and evaluation of retrospective intermodality brain image

registration techniques.” study [14] the author, Jay West under the supervision of

Michael Fitzpatrick, tried a blind test of rigid deformation algorithms to see the error

of the algorithms against a “gold standard” based on fiducial markers. They came up

with an evaluation dataset that consisted of CT, MR and PET image volumes. Each

of the image’s were taken of patients with bone-implanted fiducial markers. During

the processing of the images, the fiducial markers were air brushed out and then

given to collaborates outside of Vanderbilt to perform retrospective registrations. The

collaborates would run their algorithms to transform the CT to MR and/or from PET

to MR images. The investigators gave the transformations back to Vanderbilt which

then measured them for accuracy. The accuracy was measured at multiple “volumes

of interest” i.e., areas in the brain that would commonly be areas of neurological

interest. The volumes of interest would then be used with the Target Registration

Error (TRE) evaluation algorithm to find out how well the transformations worked.

The Vanderbilt study only evaluated rigid registrations. NIREP will evaluate

non-rigid registrations. The study used one evaluation algorithm. NIREP will use

as many evaluation algorithms as possible. The NIREP project discussed in this

work is designed to extend the Vanderbilt study to evaluate non-rigid registration

www.manaraa.com

4

algorithms. The study had people run their own algorithms on a data set and then

submit the transformations. NIREP will do the same thing of having users run

their own algorithms on a data set and then submit the transformations. The study

shows how evaluating rigid registration can be performed which is a starting point

for NIREP.

Since there is no gold standard, it has been proposed to use a less vigorous

standard called the bronze-standard [9]. The bronze-standard uses n images and m

methods to register the images to try to converge towards the “perfect” registration.

To get better results requires m and/or n to increase. Also, the methods are required

to be independent so as to reduce the bias. To try and combat the massive amount of

data and computation, the author, Tristan Glatard, suggested using a grid infrastruc-

ture of computers to do the work. The experiments used both the EGEE production

grid which has 18,000 CPU’s and 5 PB storage capacity and the Grid5000 experimen-

tal infrastructure which has 2,000 CPU’s and hundreds of GB storage capacity. The

experiment also used 110 patients, who got imaged numerous times, and 4 different

registration algorithms.

The study addressed the problem of storage of large data. Medical images are

large and the bronze standard requires a large amount of images. NIREP will have to

take care of inputting images into the program but the storage of the data is up to the

user. The study took care of an issue of a very computationally intensive problem of

finding the bronze-standard. NIREP can reference the study when the computation

of evaluations reaches a very computationally intensive problem. There is going to

www.manaraa.com

5

be lots of data and algorithms to use for NIREP and this study shows a solution to

combat the large data and algorithms and very computationally intensive problem.

The Analyze software is the “Mayo Clinic’s comprehensive biomedical imaging

software suite.” The software displays both 2-D and 3-D views. One of the views

is a 3x3 grid that fuses two images, from column one and three, into one image, in

column 2. There is an additional package that computes some Evaluation Methods

between two images and even between object maps. The software is a closed source

exclusively developed by Mayo Clinic. In having a closes source, people can not see

the method algorithms used for evaluation.

“Slicer, or 3D Slicer, is a free, open source software package for visualization

and image analysis.” The program has lots of features in part because of the plug-

in structure. Slicer is highly customizable to different user choices with plug-in’s.

The program displays both 2-D and 3-D views. As well, users can perform some

registration’s (or transformations).

Vv is a viewer of 4D images. The software uses 4 panels to display slices

of an image, all of the panels are linked. Since the program is only a viewer, only

qualitative evaluations can be performed, such as fusing images, using landmarks and

superimposing vector fields. Finally, the program is open source, based on VTK, ITK

and QT.

The VALMET software is used for measuring and visualizing the differences

between corresponding object segmentations. However the program has received only

one minor update since 2001. The different methods used for evaluation are: relative

www.manaraa.com

6

overlap, Hausdorff distance, surface distance and probabilistic overlap.

The Amide software does multimodality image analysis. The analysis is com-

puted using statistics from volumetric regions of interest (ROIs). As well, the program

allows users to perform rigid body registration. Finally the program is open source

and cross platform.

The OsiriX software display’s multidimensional images for interpretation with-

out the need for high-end expensive hardware or software. Some data today are very

large, something like 800 to 1,000 slices, that need to be interpreted. With large

data, high-end 3D workstations were required to view the images. The program is

designed to take care of the large data by a “streaming” technique. Users are allowed

to customize the program with different functions and tools. The only inputs allowed

are DICOM. Finally the program is open source but designed only for Macintosh.

However, all of these studies and tools are not a full evaluation of non-rigid im-

age registration algorithms. A full evaluation of the registration algorithms will need

to set up an evaluation database of differing image types. Then different registration

algorithms will use the evaluation database to create transformations. From there, as

many evaluation methods as possible will be performed on the transformations and

evaluation database. Once that happens, then the results of the evaluations need to

be saved and a ranking system created. When the ranking system is created, the

results need to be shared with the community.

The NIREP is both an evaluation database and a software tool for performing

a full evaluation of non-rigid image registration algorithms. The software tool has

www.manaraa.com

7

been developed to: read in the evaluation database and transformations, evaluate

registration algorithms by bringing together a collection of evaluation methods, letting

the user decide which evaluations are useful, displaying both the visualization and

numerical results and allow the user to save the evaluation results and upload them

to a website to be shared.

www.manaraa.com

8

CHAPTER 2

NIREP DESIGN

The NIREP will help evaluate Non-rigid Image Registration Algorithms. NIREP

is a downloadable program and a downloadable evaluation database. Users will be

responsible for generating their own transformations, using the evaluation database,

using as many algorithms as they want to compare. The NIREP software will read in

these transformations and an evaluation database, compute the evaluations and vi-

sually and numerically compare the algorithm performance. The evaluation database

has to be common so that fair comparisons are made between algorithms.

2.1 Requirements

2.1.1 Program Input

2.1.1.1 Evaluation Database

Currently there is no common database used for evaluations. The common

reference evaluation database will be used as a consistent measuring ruler for all

Non-rigid Image Registration algorithms. In having a consistent measuring ruler, the

amount of variables that are different between evaluations are kept to a minimum.

The evaluation database can consist of images, segmentations and contours.

2.1.1.2 Transformations

Users will use the evaluation database to create transformation data, images

or coefficients, that will be stored on disk. The transformation data is a mapping

www.manaraa.com

9

of one coordinate system to another coordinate system. The program has to read in

the transformations and use the data to transform the evaluation data into deformed

data. The evaluation algorithms will then use the deformed data to perform the

evaluations. The program should have a framework to be able to add in new modules

for different transformation readers and generators.

2.1.1.3 Organizing Data on Disk

Both the evaluation database and transformation data will be stored on disk

and required to be organized. The organization will require a file to store the location

of the data, the type of the data, and if the user wants, comments about the data. All

of the data described in the file will be considered to be part of a unique dataset. This

means that the evaluation database will have one unique file and the transformations

will have another file.

2.1.1.4 Organizing Data in Memory

The data will be read in from disk and stored in memory. The storage of

the data will need to be organized for a fast look up. The reason for the fast look

up is that different evaluation algorithms and visualization and numerical views will

require the data.

2.1.2 Evaluation Methods

There is no one evaluation algorithm that is a “gold standard”. The program

needs to bring together as many evaluation algorithms as possible. The following

evaluation algorithms (2.1.6.1-2.1.6.10) will be in the first version of NIREP and used

www.manaraa.com

10

to create a frame work for future evaluation algorithms.

2.1.2.1 Difference

The Difference shows where the intensities in two images are not the same. In

equation form the difference is defined as

ID(x) = |I1(x)− I2(x)| (2.1)

The difference computed for each ROI is defined as

IDi =
∑

x∈ROIi

|I1i(x)− I2i(x)| (2.2)

The maximum value for each ROI is defined as

MaxDi = max
x∈ROIi

|I1i(x)− I2i(x)| (2.3)

When computing the values for each ROI of other evaluation algorithms, 2.2

will be slightly modified in that |I1i(x)− I2i(x)| will be replaced with whatever algo-

rithm is used. When computing the maximum value for each ROI of other evaluation

algorithms, 2.3 will be slightly modified in that |I1i(x)− I2i(x)| will be replaced with

whatever algorithm is used.

www.manaraa.com

11

2.1.2.2 Jacobian

The Jacobian determinant of a transformation measures local expansion/contraction

and detects local singularity [4, 2]. In equation form the Jacobian determinant of

transformation h(x) = x+ u(x) in 2-D is defined as

J2(h(x)) =

∣

∣

∣

∣

∣

∣

∣

∣

∂u1(x)
∂x1

∂u2(x)
∂x1

∂u1(x)
∂x2

∂u2(x)
∂x2

∣

∣

∣

∣

∣

∣

∣

∣

, (2.4)

where u1 and u2 are two components of the displacement vector at location x =

[x1, x2]; and in 3-D is defined as

J3(h(x)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂u1(x)
∂x1

∂u2(x)
∂x1

∂u3(x)
∂x1

∂u1(x)
∂x2

∂u2(x)
∂x2

∂u3(x)
∂x2

∂u1(x)
∂x3

∂u2(x)
∂x3

∂u3(x)
∂x3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.5)

where u1, u2 and u3 are three components of the displacement vector at location

x = [x1, x2, x3]. The scale of the Jacobian determinant image intensity can be adjusted

to a log-scale.

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

www.manaraa.com

12

2.1.2.3 Inverse Consistency Error

The Inverse Consistency Error[2, 3, 1] measures the consistency of the corre-

spondence defined by forward and reverse transformations between two coordinate

systems. In an ideal case, the forward transformation should equal the inverse of

the reverse transformation. There are two type of Inverse Consistency Errors (ICE)

computed.

• First method

ICE1ij(x) = ‖hji(hij(x))− x‖2 , (2.6)

• Second method

ICE2ij(x) =
∥

∥hij(x)− h−1
ji (x)

∥

∥

2
. (2.7)

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

2.1.2.4 Transitivity Error

The Transitivity Error (TE)[3, 10, 7] measures the consistency of the corre-

spondence defined by compositions of transformations. In an ideal case, the com-

positions of the transformations should result in an identity transformation. The

Transitivity Error is computed using the following equation.

www.manaraa.com

13

CTEk(x) =
1

(M − 1)(M − 2)

M
∑

i=1

i 6=k

M
∑

j=1

j 6=i

j 6=k

‖hki(hij(hjk(x)))− x‖2 (2.8)

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

2.1.2.5 Intensity Variance

The Intensity Variance measures the similarity between a population of images

based on voxel intensity difference. In image registration applications driven by voxel

intensity features, the ideal registration should result in zero voxel intensity difference

between the registered images. The variance takes in a list of images that are used

to compute the variance.

The equation of the Intensity Variance

Mean:

u = E(x) = 1/N ∗

N
∑

i=1

xi (2.9)

where N is the number of images.

Variance:

V ar = 1/(N − 1)
N
∑

i=1

(xi − u)2 (2.10)

where N is the number of images.

www.manaraa.com

14

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

2.1.2.6 Deformed Grids

The deformed grid shows how the transformation performs on straight lines,

see Figure 2.1 for grid before transformation. A certain number of rows and columns

of lines are created and then the transformation is applied to the grid, see Figure 2.2

for grid after transformation. Changes to the grid will be the width of the grid, the

number of columns or rows and the ability to change the color of the grid. The output

will only be an image.

Figure 2.1: Regular 4 rows and 4 columns grid before being transformed.

www.manaraa.com

15

5.48,

Figure 2.2: Grid from figure 2.1 after it has been transformed. The figure shows how

the transformation, transforms straight lines and to a degree how the transformation

looks like.

2.1.2.7 Vector Plots

The vector plot shows how the transformation moves points. The vector works

by going along a defined grid to get the starting points, see Figure 2.3. Then figure

out from the starting point, where the end point is by looking at the transformation

for the given starting point. Then draw an arrow from the starting point to the end

point, see Figure fig:vectorAfter. The vector plot will be able to change the number

of starting points, the arrow width and the color of the arrows. The output will only

be an image.

www.manaraa.com

16

Figure 2.3: Vector plot before being transformed. As can be seen, there are only

points in the vector plot but no vectors. If the transformation is the identity then

this image is what should be shown.

Figure 2.4: Vector plot is shown after being transformed. As can be seen, there

are vectors pointing away from the points in the image. The vector plot shows the

transformation.

www.manaraa.com

17

2.1.2.8 Dice Coefficient

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The Dice

Coefficient[11, 15, 5, 6] figures out the region of overlap by taking twice the intersection

over the union of the segmented region of the deformed and target volumes.

Assume Si and Ti are defined as the ith segmented region in the deformed

source and target volumes.

The Dice Coefficient in equation form is:

MOi(Si, Ti) = 2
|Si ∩ Ti|

|Si|+ |Ti|
(2.11)

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

2.1.2.9 Relative Overlap

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The Relative

Overlap (RO)[12, 13, 8, 5, 6, 11] assesses how well two equally likely segmentations

www.manaraa.com

18

of the same region of interest (ROI) agree or disagree with each other. Ideally, RO of

all regions should be 1.0.

Assume Si and Ti are defined as the ith segmented region in the deformed

source and target volumes.

The relative overlap in equation form:

UOi(Si, Ti) =
|Si ∩ Ti|

|Si ∪ Ti|
(2.12)

The output will be both an image and table of numbers. The table of numbers

will hold the maximum value found, the minimum value found and the average values.

The table may be split up into region of interests, which means that the maximum,

minimum and average will be for each of the region of interests instead of over the

whole image.

2.1.2.10 Transform Images and Segmentations

The transformations read in from disk are a mapping of one coordinate sys-

tem into another coordinate system. The program will use the transformations to

transform images and segmentations.

2.1.3 Visualization

The results of the evaluations and the images on disk will be displayed in a

viewer. The 2DViewer is just a viewer of data whereas the difference, checkerboard,

wipe, superimpose segmentations over images are viewers used for evaluation. In all,

the visualization views will be qualitative evaluations of data.

www.manaraa.com

19

2.1.3.1 2DViewer

The 2DViewer will visualize the data as a single slice of the data. The location

of the slice will be able to be changed. As well, the 2DViewer will follow the properties

outlined in the section Visualization View properties.

2.1.3.2 Difference

The difference view is needed to show where two images do not align correctly

by taking the difference of the images. Wherever the two images do not align properly,

there will be a visual intensity as computed by the difference. If the images align

perfectly, a blank screen will be displayed. The view will be like the 2DViewer, in

that slices of the images will be shown.

2.1.3.3 Checkerboard

The checkerboard is like the difference, in that the view shows where two

images do not align correctly. However, this view shows the images in a checkerboard

format, like Figure 2.5 shows. The two images are placed on top of each other but

only parts of each of the images will be shown. The white square’s correspond to the

parts of the first image being shown and the black squares correspond to the parts of

the second image being shown. The number of squares within the checkerboard can

be changed by the user. The reason for this view is to show where the two images do

not align along the borders of the squares.

www.manaraa.com

20

Figure 2.5: Rough sketch of a Checkerboard view. The view takes in two images,
which are overlaid on top of each other. The white squares correspond to a portion of
image 1 being visible but not image 2 and the black squares correspond to a portion
of image 2 being visible and not image 1.

2.1.3.4 Wipe

The Wipe view is like the checkerboard, in that the view shows where two

images do not align correctly. However, this view is a 2x2 grid that the user is allowed

to grab the borders and wipe across the checkerboard, see Figure 2.6. Another way

to think of this, is that the size of the squares changes but the overall size of the

checkerboard is kept the same. The reason for this view is to show where the two

images do not align along the borders of the squares.

2.1.3.5 Superimpose Segmentations Over Images

Segmentations are a way to split up and label an image with anatomical loca-

tions. In having segmentations, the errors are localized to the different regions. The

program needs to be able to superimpose the segmentations over images to see where

the regions are in conjunction with the image. The program should be able to change

www.manaraa.com

21

Figure 2.6: Rough sketch of Wipe view. The view takes in two images, which are
overlaid on top of each other. The white squares correspond to a portion of image 1
being visible but not image 2 and the black squares correspond to a portion of image
2 being visible and not image 1. The user can grab the boundaries and wipe across
the two images.

the opacity of the segmentations so that either more of the image can be seen or more

of the segmentation can be seen.

2.1.3.6 Color Map

Users will want to view images in different color schemes to bring out different

aspects of the images. All of the visualization views will have color maps. Color maps

are a mapping of an intensity value to a color. The default color map is black and

white but can be changed to user specified color maps.

2.1.3.7 Color Bar

Users will want to have a quick method to tell what color maps with what

intensity. The color bar will tell the mapping of intensity’s to color’s in a bar chart.

www.manaraa.com

22

2.1.4 Visualization Interactions

All of the visualization views will have the following properties.

2.1.4.1 On the Fly Change of Inputs

Different inputs to the evaluation algorithms may change the outputs of the

algorithms. When the user is evaluating registration algorithms, they will want to

see if the outputs of the evaluation algorithms do change with different inputs. This

means that while the program is running, the inputs to the visualization views will

be able to be changed.

2.1.4.2 Specify Orientation

All of the visualization views are slices of an image of a certain orientation. The

user will want to see different orientations to help evaluate the registration algorithms.

The views will allow the user to specify which orientation to view.

2.1.4.3 See Cursors

When a user clicks on an image, they will want a way to remember the location

of the click. The program will use a cross-hair, a vertical and horizontal line, to

remember the location of the click. For different orientations the colors of the cross

hairs will change to reflect what the horizontal line represents and what the vertical

line represents.

www.manaraa.com

23

2.1.4.4 See Value at Clicked Location

When a user clicks on an image they will want to see the intensity value. The

intensity value can correspond to a numerical analysis of an algorithm. The program

will display the intensity value within the visualization view.

2.1.4.5 Cursor Locks

With the user being able to click on an image and seeing cross hairs and

intensity values, the different views will be able to be locked together. This means

that if the user clicks in one view, all other views that are linked to that one view

are updated with the new click information. The user is able to lock every view, just

rows of view, just columns of view, or individually choose which views to lock.

2.1.5 Quantitative Analysis

Some of the evaluations produce numerical values which require a viewer. The

following viewers will display the numerical values from the evaluations. In all the

numerical views will be the display of quantitative data.

2.1.5.1 Tables

Tables will be a raw dump of the numerical values produced by an evaluation.

There will be headings for the columns and row to help understand what each cell in

the table means. This helps a user to quantitatively say which algorithm is better.

www.manaraa.com

24

2.1.5.2 Graphs

Graphs will be a visual representation of the numerical values produced by

an evaluation. Graphs encompasses all the types of graphs, this includes pie charts,

bar graph, scatter plot and whisker plots. For those graphs that have horizontal and

vertical axis a title will be displayed.

2.1.5.3 Save Results to Disk

The program will output the quantitative reports out to disk. The user can

then submit the reports to the NIREP webpage to share with everyone. The webpage

will be able to display the evaluations so that people around the world can see how

different Non-Rigid Image Registration algorithms perform for different evaluation

algorithms.

2.1.6 Display Layout

All of the view’s, both visualization and numerical must have the following

properties.

2.1.6.1 Grid Layout

All of the views will be laid out in a grid format. In having a grid format, the

program saves valuable screen space. In saving screen space, there is greater detail

that a user can use to evaluate the different algorithms. Each of the positions of the

views is user specified. Figure 2.7 shows a grid layout of 3 columns and 3 row of two

images being evaluated using difference. The grid has titles for both the row and

columns, explaining what is happening in the grid. Each of the rows are depicting

www.manaraa.com

25

one of the three orientations that are possible within NIREP. Each of the columns are

depicting the first image, the difference of image 1 and image 2 and image 2. Within

each of the views are different objects that are within the images. For the difference

column, for the first row, it can be seen that the rectangle is shown but not the circle

because the circle’s completely overlap in image 1 and image 2. For the difference

column, for the second row, it can be seen that the rectangle in image 1 and rectangle

in image 2 do not align at all and so both rectangles are shown in the difference. For

the difference column, for the third row, it can be seen that the circle of image 1 and

rectangle of image 2 overlap each other however the rectangle of image 2 overlaps

more then just the circle, so some of the rectangle are shown.

2.1.6.2 Titles of Each Column and Row

The rows and columns of the grid layout, must have a title, as seen in Fig-

ure 2.7. This allows a user to easily understand what is being viewed and how the

evaluations are being done. When the inputs of the views are changed, the titles

will change as well. The text within the titles will be able to be changed. The title

properties, the font, the font size, the color, italicized, bold and underline, will be

able to be changed.

2.1.6.3 Change View

While the program is running the user will be able to change each individual

view. When the view is changed, default values will be used unless otherwise specified

by the user. The user may want to try a different view for evaluations and may also

www.manaraa.com

26

S

A

G

I

T

T

A

L

C

O

R

O

N

A

L

Image 1 Image 2 Difference

T

R

A

N

S

V

E

R

S

E

Figure 2.7: Grid layout showing a 3 column and 3 row of two images being evaluated
using difference. The grid has titles for both the row and columns, explaining what
is happening in the grid. Each of the rows are depicting one of the three orientations
that are possible within NIREP. Each of the columns are depicting the first image,
the difference of image 1 and image 2 and image 2. Within each of the views are
different objects that are be within the images. For the difference column, for the
first row, it can be seen that the rectangle is shown but not the circle because the
circle’s completely overlap in image 1 and image 2. For the difference column, for the
second row, it can be seen that the rectangle in image 1 and rectangle in image 2 do
not align at all and so both rectangles are shown in the difference. For the difference
column, for the third row, it can be seen that the circle of image 1 and rectangle of
image 2 overlap each other however the rectangle of image 2 overlaps more then just
the circle, so some of the rectangle are shown.

www.manaraa.com

27

change the inputs for a completely different evaluation.

2.1.6.4 Save State

Users will want to re-use the same evaluation. This means that the current

state of the view will have to be saved. The slice number, the zoom factor, the

orientation and the locking of views will have to be saved.

2.1.7 Additional Requirements

2.1.7.1 Open Source

The program must not be a black box but a program that people can see the

evaluation algorithms being used. If users want, they can modify their Non-Rigid

Image Registration Algorithms to better perform for certain evaluation algorithms.

As well, people should be able to help improve NIREP.

2.1.7.2 Distribution

NIREP will be given out to people to independently run and perform evalua-

tions of their non-rigid image registration algorithms. However, the program will not

run the Non-Rigid Image Registration Algorithms. When NIREP is given out, the

platforms that will be supported are Windows and Linux.

2.2 NIREP Software Design

This section talks about the NIREP software design. Looking over the specifi-

cations, four main classes were revealed: Data Manager, Evaluator, Display Manager

and Interface. The Data Manager takes care of reading in the data and controlling the

www.manaraa.com

28

data in memory (see Section 2.2.2). The Display Manger displays a grid of images

and statistics (see Section 2.2.4). The Evaluator is the heart of NIREP and takes

care of bringing all the evaluation algorithms together evaluating the data (see Sec-

tion 2.2.3). The Interface deals with the start up of NIREP and the first interaction

with the user. Some things that the Interface does is create the Data Manger and

Evaluator, spawn off a new Display Manager whenever the user wants to display data

or evaluations (see Section 2.2.1).

2.2.1 Interface

The Interface is the first Graphical User Interface (GUI) shown to users and

can be thought of as the anchor or base for NIREP. When the Interface is closed

NIREP quits, whereas if users close a Display Manager, NIREP will still keep on

running. Users will have the ability to create a Display Manager by reading in a

display description or creating a display description - both of which describes how

a Display Manager looks. See Display Manager for further information about the

Dispaly Manager.

The Use Case for the Interface is shown in Figure 2.8. The Use Case is

initiated by a User and the entry condition is that the user opens NIREP. When the

user opens NIREP, then the Interface will be created. After the Interface is created,

the Interface will create an instance of the DataManager. After the DataManager is

created, the Interface will create an instance of the Evaluator and pass a reference of

the DataManager to the Evaluator. The Use Case is illustrating that there will be

one instance of the DataManager and one instance of the Evaluator and references

www.manaraa.com

29

Use case name User opens NIREP for first time

Participating actors Initiated by User

Interface

DataManager

Evaluator

Flow of events 1. Interface creates an instance of DataManager

2. Interface creates an instance of the Evaluator and passes a reference of the DataManager

Entry condition User opens NIREP

Exit condition Evaluator is created

Quality requirements

Figure 2.8: Use case for the Interface. The use case goes over a user opening NIREP
for the first time.

Interface

+readSpatialData()

+getSpatialData(in dmid)

DataManager

+evaluate(in evaluatorVariable, in displayDescription : DisplayDescription)

+create(in dataManager : DataManager)

+storeToDataManager(in data : Data Object, in dmid)

Evaluator

+displayGrid()

+create(in filename)

DisplayManager

1

1
1

*

Interface class diagram

1

1

Figure 2.9: Class diagram for the Interface. The Interface has a reference to the
DataManger, the Evaluator and to the DisplayManager’s.

passed around.

The Class diagram for the Interface is shown in Figure 2.9. As can be seen in

the Class diagram there will be one DataManager, one Evaluator and 0 to as many

as the user wants of DisplayManagers. Also, there have been some functions found

that would be useful in the different classes.

The sequence diagram for the Interface is shown in Figure 2.10. As can be

www.manaraa.com

30

User Interface

Opens NIREP

EvaluatorDataManager

User Opens NIREP for first time

create()

create(in dataManager : DataManager)

Figure 2.10: Sequence diagram for the Interface. The sequence diagram follows the
use case of a user opening NIREP for the first time.

seen, the sequence diagram follows the use case. Time runs from top to bottom.

The User opens NIREP, which creates the Interface. From there, the Interface calls

the create function of the DataManger, to create an instance of the DataManager.

From there the Interface calls create of the Evaluator and at the same time passes a

reference of the DataManager.

2.2.2 Data Manager

The Data Manager is a stand alone manager of the data on disk and in memory.

The Resource Description List (RDL) within the Data Manager is used to find the

data on disk and create unique Data Manager Identification’s (DMID) for the data

www.manaraa.com

31

in memory. The DMID will be used as a means to look up the data in memory, this

way duplicate data is not stored in memory. If a piece of data is not defined in the

RDL, then there will need to be a prompt to the user to fill in a description of the

data on disk or a creation by an evaluation task. See RDL for further information

about the RDL.

The Class diagram for the Data Manager is shown in Figure 2.11. As can be

seen in the Class diagram there will be one Resource Description List and 0 to as

many as read in Data Objects. The Data Object will serve as a superclass for all

data. In having a superclass the program can use polymorphism and an easy way

to pass around data within the program. A polymorphic superclass helps to bring

together classes that share common traits and function calls. The inheriting classes

can override the functions but to the program, the classes look the same and only

the common function calls are used except for specific times. For future data classes,

they can inherit from Data Object and very little changes will need to be made to

the program. Also, there have been some functions found that would be useful in the

different classes.

2.2.3 Evaluator

The Evaluator is a manager of evaluator function names with their corre-

sponding evaluation object classes. The evaluation object classes will all inherit from

a super class called Statistic Tasks. In doing the inheritance, the usage of polymor-

phism can be done and the addition of more statistics is easily done. NIREP will

start off with the following statistics: Dice Coefficient, Intensity Variance and Inverse

www.manaraa.com

32

+readSpatialData()

+getData(in dmid)

+create()

+storeData(in dmid, in data : Data Object)

DataManager

Resource Description List

1

1

Data Manager class diagram

+getImage()

+getTransformation()

+getObjectEntry()

+getTextTable()

+getDataPointer()

Data Object

SpatialData

+getTransformation()

Transformation

+getImage()

Image

SicleTransformation AirTransformation

+getLandmarks()

Landmarks

1

*

+getTextTable()

TextTable

+getObjectEntry()

ObjectMap

Figure 2.11: Class diagram for the Data Manager. The Data Manager keeps track of
all the data that NIREP needs to use. To keep track of the data, the Data Manager
needs a reference to 0 to as many specified DataObjects.

www.manaraa.com

33

Consistency Error.

The Use Case for the Evaluator is shown in Figure 2.12. This specific use

case will describe how a Difference Evaluator Task will compute the difference. This

specific Use Case will be a framework for how other Evaluator Task’s will compute

other evaluation algorithms. The Use Case is initiated by the Panel and the entry

condition is that the Panel calls Evaluate of the Evaluator. From there, the Evaluator

will figure out the evaluator command, this will be a fully qualified name that if the

data is in memory, will be quickly found. From there, the Evaluator will ask the

Data Manager for data using the evaluator command as the key to look up the data.

The Data Manager will see if the data is in memory. In this case the data is not in

memory, so NULL is returned. From there the Evaluator will look up the evaluator

command’s function name, in doing so the different Evaluator Task’s can be easily

looked up for computation or a base case will be hit. In this case the function name

is difference, which corresponds to the Difference Evaluator Task. The Evaluator

will then call the Evaluate function of the Evaluator Task. From here the Evaluator

Task will search for it’s inputs by asking the Evaluator for it’s inputs. The evaluator

will go through the same process as looking up difference(image1,image2). In this

respect, the Evaluate function of the Evaluator is acting like a recursion function until

a base case is hit. In the example, the base case is hit when an evaluator command’s

function name is readSpatialData. When the base case is hit, the Evaluator will

ask the Data Manager to read in the data. The Data Manager will read in the data

and return a pointer to the data. From there the Evaluator will return a pointer to

www.manaraa.com

34

the data to the Evaluator Task. When the Evaluator Task eventually gets a pointer

to both image1 and image2, then the Evaluator Task can compute the difference in

this case. When the Evaluator Task is done computing the evaluations, the Evaluator

Task tells the Evaluator to store the newly created data. The Evaluator will then

tell the Data Manager to store the data, since the Data Manager is the holder of all

data. Finally the Evaluator Task will call Evaluate of the Evaluator one more time

to get the created data. The reason for this, is that the Evaluator Task can create

more then one new data and doesn’t know which one to return. So the Evaluator will

go through the process of asking the Data Manger for the data, which should now

be in memory. The Data Manager will return a pointer to the data, the Evaluator

will return a pointer to the data, the Evaluator Task will return a pointer to the data

and finally the Evaluator will return a pointer to the data to the Panel. The exit

condition is when the Panel receives a pointer to the newly created data.

The Class diagram for the Evaluator is shown in Figure 2.13. As can be seen

in the Class diagram there will be one DataManager and 0 to as many as created

of Evaluator Tasks. The Evaluator Task will be a super class that all evaluation

algorithms inherit from. In having a super class, the program can use polymorphism

to use the evaluation algorithms. By using polymorphism the addition of new eval-

uation algorithms will be easy and very minimal changes to the program will need

to be done. Also, there have been some functions found that would be useful in the

different classes.

The sequence diagram for the Evaluator is shown in Figure 2.14. As can be

www.manaraa.com

35

Use case name Difference Evaluator Task

Participating

actors

Initiated by Panel

Evaluator

Difference

Data Manager

EvaluatorList

Flow of events 1. Evaluator asks the EvaluatorList for the evaluator command of difference

2. EvaluatorList returns the evaluator command (difference(image1,image2))

3. Evaluator asks Data Manager for the differenceData based on the evaluator command

4. Data Manager responds back with NULL

5. Evaluator then looks up the Difference based on the evaluator command's function name (i.e.

difference)

6. Once Difference is found, call the Evaluate function of the difference

7. The Difference calls the Evaluate function of the Evaluator for image1.

8. Evaluator asks the EvaluatorList for the evaluator command for image1.

9. EvaluatorList returns the evaluator command (readSpatialData(na0|01,MRI))

10. The Evaluator asks the Data Manager for the image1Data based on the evaluator command

11. Data Manager responds back with NULL

12. The Evaluator asks the Data Manager to read in image1Data

13. Data Manager reads in image1Data and returns a pointer to image1Data

14. The Evaluator returns a pointer to image1Data to the Difference

15. The Difference calls the Evaluate function of the Evaluator for image2.

16. Evaluator asks the EvaluatorList for the evaluator command of imag2

17. EvaluatorList returns the evaluator command (readSpatialData(na0|02,MRI))

18. Evaluator asks Data Manager for the image2Data based on the evaluator command

19. Data Manager responds back with NULL

20. The Evaluator asks the Data Manager to read in image2Data

21. Data Manager reads in image2Data and returns a pointer to image2Data

22. The Evaluator returns a pointer to image2Data to the Difference

23. The Difference computes the difference of the two images

24. The Evaluator Task calls the StoreToDataManager function of the Evaluator, to keep track of the

newly created data

25. The Evaluator asks the Data Manager to keep track of the new data

26. The Data Manager puts the new data in a map of in memory data objects

27. The Evaluator Task calls the Evaluate function of the Evaluator to get the new data

28. Evaluator asks the EvaluatorList for the evaluator command of difference

29. EvaluatorList returns the evaluator command (difference(image1,image2))

30. The Evaluator asks the Data Manager for the differenceData

31. The Data Manager returns a pointer to the differenceData to the Evaluator

32. The Evaluator returns a pointer to the differenceData to the Difference

33. The Difference returns a pointer to the differenceData to the Evaluator

34. The Evaluator returns a pointer to the differenceData to the Panel

Entry condition Panel calls Evaluate of the Evaluator

Exit condition Panel receives a pointer to the newly created data

Quality

requirements

Figure 2.12: Use case for the Difference Evaluator Task. The use case goes over a
typical request for an evaluation task, such as the Difference.

www.manaraa.com

36

+evaluate(in evaluatorVariable, in displayDescription : DisplayDescription)

+create(in dataManager : DataManager)

+storeToDataManager(in data : Data Object, in dmid)

Evaluator

Evaluator class diagram

+evaluate(in args, in displayDescription : DisplayDescription)

-compute()

EvaluatorTask

1

*

Overlap IntensityVariance InverseConsistencyError

+readSpatialData()

+getImageData(in dmid)

+create()

DataManager

1 1

Transform TransitivityErrorDifferenceJacobian DeformedGrid VectorPlots

Figure 2.13: Class diagram for the Evaluator. The Evaluator has references to the DataManager and EvaluatorTasks. All
evaluator tasks, such as Difference, RelativeOverlap, Transitivity Error, will inherit from EvaluatorTask so that the program
can use polymorphism.

www.manaraa.com

37

seen, the sequence diagram follows the use case. Time runs from top to bottom.

The Panel calls Evaluate of the Evaluator with some parameters. From there the

Evaluator asks the EvaluatorList for the evaluator command and the EvaluatorList

returns the differenceCommand. The Evaluator will ask the DataManager for the

data that corresponds with the differenceCommand. The DataManager will return

NULL signifying that the data is not in memory. The Evaluator will then figure

out the evaluator command function name, which will be difference. From there the

Evaluator will look up the Difference EvaluatorTask and call the function evaluate

with some parameters. From there the Evaluator Task will ask the Evaluator for its

inputs, image1 and image2. Eventually the EvaluatorTask will get it’s inputs and then

compute the difference. Once the EvaluatorTask has computed the evaluations, it will

call storeToDataManager of the Evaluator. The Evaluator will then call storeData

of the DataManager to store the newly created data. Then the EvaluatorTask will

ask the Evaluator for the newly created data because the EvaluatorTask can create

more then just one data and doesn’t know which to return. The Evaluator will ask

the DataManger for the data and return a pointer to the data. The Evaluator will

return a pointer to the data to the EvaluatorTask. The EvaluatorTask will return a

pointer to the data to the Evaluator. Finally the Evaluator will return a pointer to

the data to the Panel. The ending part where the pointer is passed along is wrapping

up the recursion that was performed.

www.manaraa.com

38

Panel Evaluator DataManager

evaluate(in difference : EvaluatorVariable,in dd : displayDescription)

getData(in differenceCommand : Dmid)

Difference Evaluator Task

Return NULL

Return differenceData : DataObject

Difference :: EvaluatorTask

evaluate(in args : vectorOfStrings, in displayDescription : DisplayDescription)

evaluate(in image1 : EvaluatorVariable,in dd : DisplayDescription)

getData(in image1Command : Dmid)

Return NULL

readData(in image1Command : Dmid)

Return image1Data : DataObject

Return image1Data : DataObject

evaluate(in image2 : EvaluatorVariable,in dd : DisplayDescription)

getData(in image2Command : Dmid)

Return NULL

readData(in image2Command: Dmid)

Return image2Data : DataObject

Return image2Data : DataObject

Return differenceData : DataObject

evaluate(in differenceCommand : Dmid, dd : DisplayDescription)

getData(in differenceCommand : Dmid)

Return differenceData : DataObject

storeToDataManager(in differenceCommand : Dmid, in difference : DataObject)

storeData(in differenceCommand : Dmid, in difference : DataObject)

Return differenceData : DataObject

Compute()

EvaluatorList

getEvaluatorCommand(in evaluatorVariable)

Return differenceCommand (difference(image1,image2))

getEvaluatorCommand(in image1 : EvaluatorVariable)

Return image1Command (readSpatialData(na0|01,MRI))

getEvaluatorCommand(in image2 : EvaluatorVariable)

Return image2Command

Figure 2.14: Sequence diagram for the Evaluator. The sequence diagram follows the use case of a typical request for an
evaluation task, such as the Difference.

www.manaraa.com

39

2.2.4 Display Manager

The Display Manager is the manager of displaying the qualitative and quan-

titative evaluations. To be able to display the evaluations a Display Description is

needed that describes the visualization, the evaluations and the data. The Display

Description can be used in multiple Display Managers. The Display Manager will

display the evaluations in a grid layout, where each cell of the grid contains a panel.

The Display Manager will be responsible for locking the panels. Each of the Panels

consists of one Widget and a title and can be thought of as a manager of that Widget

and title. The panels will take care of changing the widgets, and changing the title of

the panel. A widget is a super class that other views can inherit from, so that poly-

morphism can be used and the addition of future widgets is easy. In addition, some of

the widgets will inherit from the 2D View Widget, for specialized cases. The different

widgets are: 3D View Widget, 2D View Widget, Checkerboard Widget, Difference

Widget and Wipe Widget.

The Use Case for the DisplayManager is shown in Figure 2.15. This exam-

ple will use a display description to illustrate a user displaying a 2DViewer from

the interface. The Use Case is initiated by the Interface and the entry condition

is that the Interface creates a DisplayManager. When the Interface creates a Dis-

playManager, its going to pass along the Display Description file name. This is the

location on disk where the Display Description file is located. From there the Dis-

playManager will create a DisplayDescription. The DisplayDescription will represent

the Display Description file on disk as an object in memory. The DisplayDescription

www.manaraa.com

40

will create a VariableList, an EvaluatorList, a WidgetList, a DisplayAttributes and a

ResourceDescriptionList. When the DisplayDescription creates the 5 classes, it will

pass the file name to each of them and in turn each of the classes will parse the file and

pull out the relevant data. Once the DisplayDescription is created, the DisplayMan-

ager will create one panel for this example. A panel can be thought of as a manager

of a cell in the grid within the DisplayManager. The DisplayManager will ask the

WidgetList for the inputs for the specific panel and then adds the inputs to the Panel.

Then the DisplayManager will ask the WidgetList for the widget type for the specific

panel. A widget type is a key into which type of view to use, for this example the

widget type is 2DViewer. The DisplayManager will then call useWidget of the Panel

while passing in the widget type. From there the Panel will create a 2DViewer. Then

the Panel will ask the Evaluator for data based on the inputs the DisplayManager

passed in. The Evaluator will get the data and return a pointer to the data. The

Panel will then call setInput of the 2DViewer. Next the DisplayManager will ask

the DisplayAttributes for the attributes and then distribute those attributes to the

respective panels. The exit condition is when the DisplayManager is displayed.

The Class diagram for the DisplayManager is shown in Figure 2.16. As can

be seen in the Class diagram there will be one DisplayDescription and composed of

0 to as many as Panels as the user specifies. The black diamond means that the

DisplayManager is composed of Panel. As well, the Widget class will be a super

class for all views. In having a super class, the program can use polymorphism for

future views. Also, there have been some functions found that would be useful in the

www.manaraa.com

41

Use case name User Displays a 2D viewer from the Interface, using a display description

Participating actors Initiated by Interface

Evaluator

DisplayDescription

Panel

DisplayManager

DataManager

EvaluatorList

WidgetList

DisplayAttributes

ResourceDescriptionList

2DViewer

Flow of events 1. Interface passes Display Description file name to DisplayManager

2. DisplayManager creates a DisplayDescription, while passing in the Display Description

file name

3. DisplayDescription creates VariableList while passing in the Display Description file name

4. DisplayDescription creates EvaluatorList while passing in the Display Description file

name

5. DisplayDescription creates WidgetList while passing in the Display Description file name

6. DisplayDescription creates DisplayAttributes while passing in the Display Description file

name

7. DisplayDescription creates ResourceDescriptionList while passing in the Display

Description file name

8. DisplayManager creates one Panel

9. DisplayManager asks WidgetList for the inputs for the specific panel

10. DisplayManager adds the inputs to the Panel

11. DisplayManager asks WidgetList for the widget type for the specific panel

12. DisplayManager calls useWidget of the Panel

13. Panel creates a 2DViewer

14. Panel asks Evaluator for data

15. Evaluator asks DataManager for data

16. DataManager reads data from disk

17. DataManager returns data

18. Evaluator returns data

19. Panel calls setInput of the 2DViewer

20. DisplayManager asks the DisplayAttributes for the attributes

21. DisplayAttributes returns the attributes

22. DisplayManager distributes the attributes

Entry condition Interface creates DisplayManager

Exit condition DisplayManager is displayed

Quality requirements

Figure 2.15: Use case for the DisplayManager. The use case is for a user displaying
a 2D viewer from the interface, using a display description.

www.manaraa.com

42

different classes.

The sequence diagram for the Display Manager is shown in Figure 2.17. As

can be seen, the sequence diagram follows the use case. Time runs from top to bot-

tom. The Interface creates a DisplayManager and passes in the file name for the

Display Description. The DisplayManager creates a DisplayDescription and passes

in the file name. From there the DisplayDescription creates a VariableList, Evalu-

atorList, WidgetList, DisplayAttributes and ResourceDescriptionList, all the while

passing in the file name. The 5 classes will read the file name and pick out the rel-

evant data from the file. From there the DisplayManager will create a Panel. Then

the DisplayManager will asks the WidgetList for the parameters, which will be the

inputs to the Panel. The DisplayManager then set’s the inputs to the Panel. Then

the DisplayManager asks the WidgetList for the widget type. From there the Dis-

playManager calls useWidget, passing in the widgetType, which for this example is

2DViewer. Then the Panel will create a 2DViewer. Then the Panel will ask the

Evaluator for the data and will eventually get the data. From there the Panel will

call setInput of the 2DViewer and pass in the data. Finally the DisplayManager will

ask the DisplayAttributes for the attributes and then distribute the attributes to the

respective panels.

2.2.5 NIREP Display Description Document

The Class diagram for the Display Description is shown in Figure 2.18. The

Display Description consists of one Evaluator List, one Widget List, one Variable List,

one Display Attributes and one Resource Description List. The Resource Description

www.manaraa.com

43

+displayGrid()

+setDisplayDescription()

+getDisplayDescription()

DisplayManager

+setDisplayDescription()

+useWidget(in widgetType)

+create(in evaluator : Evaluator)

Panel

1

*

Checkerboard Difference Wipe

1

1

2D View Widget

Display Manager class diagram

+create(in filename)

DisplayDescription

1

1

Widget

3D View Widget

Figure 2.16: Class diagram for the Display Manager.

www.manaraa.com

44

Interface DisplayManager DisplayDescription PanelVariableList EvaluatorList WidgetList

create(in filename)

create(in filename)

create(in filename)

create(in filename)

create(in filename)

createe(in dd : DisplayDescription, in evaluator : Evaluator)

useWidget(in 2dViewer : WidgetType)

User Displays a 2D viewer from the Interface, using a display

description

2DViewer

Create()

Evaluator DataManager

evaluate(in ev : EvaluatorVariable,in dd : DisplayDescription)

Return image1Command

getEvaluatorCommand(in ev)

getData(in image1Command : Dmid)

Return image1 : DataObject

Return image1 : DataObject

setInput(in image1 : DataObject

ResourceDescriptionListDisplayAttributes

create(in filename)

create(in filename)

getWidgetType(in row, in column)

Return 2dViewer : WidgetType

getWidgetParameters(in row, in column)

Return parameters : VectorOfParameters

SetIds(in ev : EvaluatorVariable)

getAttributes()

Return Attributes

DistributeAttributes()

Figure 2.17: Sequence diagram for the evaluator use case, which is the user displaying a 2D viewer from the interface using
a display description.

www.manaraa.com

45

+create(in filename)

+getEvaluatorList() : EvaluatorList

+getWidgetList() : WidgetList

+getVariableList() : VariableList

+getDisplayAttributes() : DisplayAttributes

+getReourceDescriptionList() : ResourceDescriptionList

DisplayDescription

+create(in filename)

+getEvaluatorCommand(in evaluatorVariable)

EvaluatorList

+create(in filename)

WidgetList

+create(in filename)

VariableList

+create(in filename)

DisplayAttributes

+create(in filename)

ResourceDescriptionList

1

1

1

1

1

1

1

1

1

1

Display Description class diagram

Figure 2.18: Class diagram for the Display Description. The Display Description
is composed of the EvaluatorList, WidgetList, VariableList, Display Attributes and
ResourceDescriptionList. The Display Description is a copy of the ND3 file but read
into memory.

list consists of multiple Basic Descriptions and multiple Resource Descriptions. The

Display Description in a sense, is a holder class for the various other classes that make

up how the display will be presented to the user.

Users will tell NIREP how to display the data by creating a NIREP Display

Description Document (ND3). The ND3 file is responsible for controlling the behav-

ior of the Display Manger, Evaluator and DataManger and the human-readable file

typically looks like the following:

Begin ResourceDescriptionList

Databases\NA0.2\resources.rdl

Transformations\NA0.2\AIR5_Param1\air5.rdl

Transformations\NA0.2\SICLE_Param1\sicle.rdl

Transformations\NA0.2\BRAINSDemons_Param1\demons.rdl

www.manaraa.com

46

End ResourceDescriptionList

Begin DisplayAttributes

columnSize(2)

rowSize(2)

LockAll()

End DisplayAttributes

Begin VariableList

image1 = na0|008

image2 = na0|014

modality = MRI

End VariableList

Begin WidgetList

W1,1 = view(_image1,Image ${image1})

W1,2 = checkerboard(_image1,_image2,Images ${image1} and ${image2})

W2,1 = view(_image2,Image ${image2})

W2,2 = wipe(_image1,_image2,Images ${image1} and ${image2})

End WidgetList

Begin EvaluatorList

www.manaraa.com

47

_image1 = SpatialData(image1,modality)

_image2 = SpatialData(image2,modality)

_A3 = Transformation(image1,image2,SICLE_Param1)

_A20 = Transformation(image2,image1,SICLE_Param1)

_A7 = SpatialData(image1,OBJMAP)

_A8 = SpatialData(image2,OBJMAP)

_A9 = Jacobian(_A3)

_A10 = TransformImage(_image1,_A3)

_A27 = InverseConsistencyErrorImage(_A20,_A3,inv)

_A29 = InverseConsistencyErrorImage(_A3,_A20,comp)

_A30 = InverseConsistencyErrorImage(_A20,_A3,comp)

End EvaluatorList

The ND3 file is divided up into five different segments:

1. Resource Description List

2. Display Attributes

3. Variable List

4. Widget List

5. Evaluator List

www.manaraa.com

48

2.2.5.1 Resource Description List

This section is demarcated by Begin ResourceDescriptionList and End Re-

sourceDescriptionList operatives. Each line in this section lists relative paths to Re-

source Description List files which provide information about how data will be read

into NIREP.

2.2.5.2 Display Attributes

This section is denoted by Begin DisplayAttributes and End DisplayAttributes.

There are seven Display Attribute commands that can be specified:

1. RowSize(int r) Row size of the NIREP Display Widget grid. e.g. RowSize(3)

2. ColumnSize(int c) Column size of the NIREP DisplayWidget grid. e.g. Column-

Size(3)

3. Lock(Widget w1; Widget w2; ...; Widget wN) Locks behaviors of specified

widgets. e.g. Lock(W1,1;W1,2;W1,3)

4. CursorLocation(Widget w; int x; int y) Default cursor location of specified

widget. e.g. CursorLocation(W1,1;50;128)

5. Slice(Widget w; int z) Default image slice location of specified widget. e.g.

Slice(W2,2;150)

6. Orientation(Widget w; Orientation o) Default orientation of specified widget.

e.g. Orientation(W3,1;TRANSVERSE)

7. LockAll() Locks all Display widgets.

www.manaraa.com

49

RowSize() and ColumnSize() are required while the remaining commands are

optional.

2.2.5.3 Variable List

This section is specified between Begin VariableList and End VariableList op-

eratives. The variables that will be shared between the Widget List and the Evaluator

List will be specified on each line, following a variable name = variable format. The

variables can be changed dynamically during runtime in NIREP, making mass switch

of variables simple (e.g. simultaneously changing the display of multiple widgets with

a single variable change).

2.2.5.4 Widget List

This section is defined between Begin WidgetList and End WidgetList. Each

line of the Widget List specifies the behavior of each widget, in the following format:

widget name = widget function(vars). Widget names take the form Wr,c, where r

and c are row and column indices (e.g. W1,1 for first row and column). The following

is the list of NIREP Display Widget functions:

1. View(image, title) 2DViewer that displays the image specified in the variable

image, with widget title title. The image data can be viewed from three different

image orientations: Sagittal, Coronal and Transverse.

image - Input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

www.manaraa.com

50

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. View(A1, Image 001 MRI) View(img, Image $image $modality)

2. Checkerboard(image1, image2, title) Displays two images in a checkerboard grid

for comparison. All three image orientations supported by the View() widget

are supported.

image1 - First input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. Checkerboard(A1, A2, Checkerboard Image 001 CT & Image 002 CT)

3. Wipe(image1, image2, title) Displays two images in a wipe widget for compari-

son. All three image orientations supported by the View() widget are supported.

image1 - First input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

www.manaraa.com

51

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. Wipe(A1, img, Wipe Image 001 CT & Image imagemodality)

4. ObjectMap(objmap, title) 2D object map viewer with colorized object regions.

All three image orientations supported by the View() widget are supported.

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. ObjectMap(A3, ObjectMap 001)

5. OverlayObjectMap(image, objmap, title) 2D image viewer with colorized object

map overlay. All three image orientations supported by the View() widget are

supported.

image - Input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image data.

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

www.manaraa.com

52

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. OverlayObjectMap(A1, A3, ObjectMap Overlay 001 CT)

6. OverlayImage(image1, image2, title) 2D image viewer with second image over-

lay. All three image orientations supported by the View() widget are supported.

image1 - First input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image data.

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. OverlayImage(A1, A2, Image Overlay 001 CT 002 CT)

7. RelativeOverlap(objmap1, objmap2, title) 2DViewer showing the relative over-

lap difference between two object maps. All three image orientations supported

by the View() widget are supported.

objmap1 - First input object map variable. The variable should either be defined

in the Evaluator List or the Variable List, and should point to ObjectMap data.

objmap2 - Second input object map variable. The variable should either be de-

fined in the Evaluator List or the Variable List, and should point to ObjectMap

data.

www.manaraa.com

53

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. RelativeOverlap(A3, A4, Relative Overlap 001 002)

8. BlankWidget() The BlankWidget is used to specify that there is no display wid-

get for a particular panel location in the grid. A view widget will be displayed

without any inputs. With being a view widget, a popup context menu can be

activated with a right click to bring up the standard options for a widget. This

context menu will allow the user, among other things, to replace the view with

another widget.

2.2.5.5 Evaluator List

This section is defined between Begin EvaluatorList and End EvaluatorList.

Each line of the Evaluator List specifies evaluator functions, some of which may

not be in use by any of the widgets, in the following format: evaluator var =

evaluator function(vars). The following is the list of NIREP Evaluator func-

tions:

(a) SpatialData(cs id, label)

(b) Transformation(cs1 id, cs2 id, algorithm)

(c) Diff(image1, image2)

(d) XDisp(transform)

(e) YDisp(transform)

www.manaraa.com

54

(f) ZDisp(transform)

(g) Jacobian(transform)

(h) TransformImage(image, transform, interpolation) [interpolation currently

not implemented]

(i) InvertTransformation(transform)

(j) InverseConsistencyErrorImage(fwd transform, rev transform, method)

(k) TransitivityErrorImage(transform12, transform23, transform31, method)

(l) IntensityVarianceTramsform(refimage, images, label, algorithm)

(m) IntensityVarianceImage(images, label)

www.manaraa.com

55

CHAPTER 3

IMPLEMENTATION

The NIREP software is implemented in C++ using ITK, VTK, wxWidgets

and vtkINRIA3D. ITK was selected for the numerous file formats that can be read

in and for the extensive amounts of algorithms for image analysis. VTK was selected

for displaying images. KWWidgets was originally used for the GUI. However the

creation of GUIs was too hard, too slow and didn’t provide as nice of a GUI. wxWid-

gets replaced KWWidgets because there is a GUI builder, the GUI looks nicer and

wxWidgets is widely used. Some of the previous code from KWWidgets was re-used

and the concept used with KWWidgets was expanded. vtkINRIA3D was selected for

the extension of VTK such as locking of render windows, display of cross hairs and

display of image information. The following sub chapters will talk about the four

specific main classes, Data Manager, Display Manager, Evaluator and Interface, and

their supporting classes.

3.1 Data Manager

The Data Manager is responsible for managing all image and metric data

within NIREP. This includes responsibility for handling queries from other com-

ponents for access to various types of data, as well as memory management func-

tions such as dynamic movement of images between memory and disk and com-

pression/decompression of data. The Data Manager is implemented to retain the

results of computationally intensive operations on data elements in order to avoid

www.manaraa.com

56

re-computation of these operations to satisfy future requests. The DataObject class

is a polymorphic superclass that stores the in memory data - this means that data

classes will inherit from DataObject and implement certain functions. By having a

polymorphic superclass all data have a common alias, the data is stored in a quick

lookup map, and the data is passed around as a single entity instead of as many data

types as supported in NIREP. The ITK software library is used for reading in most

of the data. When ITK can not read in the data, for example certain transformation

co-efficient files, the derived class of DataObject will be responsible for reading in the

data.

3.2 Display Manager

The Display Manager is a GUI, based on wxWidgets frame class, and a man-

ager of panels and labels. The manager is implemented to place panels and labels into

a grid format (see Figure 2.7) based on a Display Description, keep track of which

panels are located in the grid, link the panels, turn off and on the titles, add panels

and delete panels. The GUI part displays menu options to take care of opening a

new Display Manager, to open a Display Description, to turn on and off the cursors,

to turn on and off the titles, to edit a panel, to lock the cursors between panels, to

change the variable content of a Display Description and to bring up a standard eval-

uation display Single Algorithm Comparison. A new instance of the Display Manager

is created every time the user opens a new display - either from the Interface or from

a Display Manager. The Display Manager relies on a lot of supporting classes to help

with the interaction with the user.

www.manaraa.com

57

3.2.1 Supporting classes

Each of the following sections discusses the supporting classes that the Display

Manager uses. Some of the supporting classes are GUI’s, based on wxWidgets, and

some are views based on vtkINRIA3D and VTK, that are displayed within the Display

Manager.

3.2.1.1 Checkerboard

The Checkerboard view widget is implemented by extending NIREPvtkViewIm-

age2D to support two images and to use VTK’s Checkerboard Widget. VTK’s

Checkerboard Widget is implemented where if a user wants they can slide the sliders

of the border located on the top and bottom and to the right and left of the image

to change the number of rows and columns in the checkerboard. The checkerboard

is used to find where two images do not align properly. If two images align properly

then the two images will become one image (see Figure 3.1), whereas if the two images

do not align properly then the checkerboard format appears in the view (see Figure

3.2 and Figure 3.3).

3.2.1.2 EditTextPanels

The EditTextPanels is a GUI that, for those widgets that are displaying text,

allows a user to make changes to the font. A user can change the font by clicking

on a wxFontPickerCtrl button, which pops open a GUI with all the changes that a

user can do to the font. As well, a button is displayed that, when clicked, brings up

a PanelForm to make changes to the panel.

www.manaraa.com

58

Figure 3.1: Checkerboard view widget, of two images na01 and na01. This is showing
when two images align perfectly, the checkerboard view widget will look like one
image.

Figure 3.2: Checkerboard view widget of two images na01 and na02. This is showing
two images being evaluated, using the Checkerboard view widget, before registration.
As can be seen along the borders, the two images do not align perfectly.

www.manaraa.com

59

Figure 3.3: Checkerboard view widget of two images na01 and demons na01 def na02.
This is showing one image and one transformation being evaluated using the Checker-
board view widget. As can be seen along the borders, the two images do not align
perfectly.

3.2.1.3 GetPanelFromUser

The GetPanelFromUser is a GUI that is opened up from a Display Manager

menu option. This allows a user to select which panel they want to modify. Depending

on the type of panel chosen either a EditTextPanels GUI or a PanelForm GUI will

be opened.

3.2.1.4 Grid

The Grid is a view that allows a user to view a transformation in a grid

layout. A normal grid is first created and then transformed based on the user chosen

transformation. This helps to show how the transformation deforms horizontal and

vertical lines.

www.manaraa.com

60

Figure 3.4: Panel selector GUI within NIREP. The panel selector GUI allows a user
to select which panel they want to modify by putting in the row and column of the
panel.

Figure 3.5: Grid view widget within NIREP. The grid shows how a registration
transforms straight lines.

www.manaraa.com

61

Figure 3.6: Edit Display Variables GUI within NIREP. The Edit Display Variables
GUI allows a user to edit the values associated with a variable within a Display
Description.

3.2.1.5 NIREPEditProjectFile

The NIREPEditProjectFile is a GUI that allows a user to edit the variables

in the display description (See 2.2.5.3 for further details on variables). Once a user is

done with editing the variables they can click on reload, which will reload the whole

entire display description with the new variables. This is useful to change data quickly

without having to add in new evaluator commands or manually changing evaluator

commands.

3.2.1.6 NIREPvtkInteractorStyleImage2D

NIREPvtkInteractorStyleImage2D is an extension of vtkInteractorStyleImage

and modified from vtkINRIA3D’s vtkInteractorStyleImage2D. The modifications: in-

cluded Panel so that popup menus are possible and commented out the items for right

www.manaraa.com

62

clicking and put in a call to the panel to deal with right clicking. Also renamed the

class from vtkInteractorStyleImage2D to NIREPvtkInteractorStyleImage2D so that

the changes are kept but not have vtkINRIA3D in our source tree.

3.2.1.7 NIREPvtkViewImage

NIREPvtkViewImage is modified from vtkINRIA3D’s vtkViewImage. As well,

NIREPvtkViewImage is the base class for 2D/3D image viewers, see NIREPvtkViewIm-

age2D for the 2D image viewer. The modifications: changed the variable ScalarBar

from being a vtkScalarBarActor* to a vtkScalarBarWidget* which meant that the

get and set functions were changed.

3.2.1.8 NIREPvtkViewImage2D

NIREPvtkViewImage2D is an extension of NIREPvtkViewImage2D and mod-

ified from VTKINRIA3D’s vtkViewImage2D. NIREPvtkViewImage2D is the main

class that is passed around in NIREPDisplay. The modifications: changed the inher-

ited class from vtkViewImage to NIREPvtkViewImage.

3.2.1.9 NIREPvtkViewImage2DCommand

NIREPvtkViewImage2DCommand is an extension of vtkCommand and mod-

ified from vtkINRIA3D’s vtkViewImage2DCommand. The modifications: this file

contains references to vtkViewImage2D and vtkInteractorSytleImage2D but those

files were brought into NIREP with modifications so the references were changed to

NIREPvtkViewImage2D and NIREPvtkInteractorSytleImage2D.

www.manaraa.com

63

Figure 3.7: View widget. In this figure the na01 brain image is being displayed in the
Coronal orientation.

3.2.1.10 ObjectmapForm

The ObjectmapForm is a GUI that is opened from a user right clicking on an

image and selecting “Object Map” and takes care of changing the different aspects of

an object map. The aspects are: turning off and on the entries, changing the names,

changing the color and changing the number of shadows. When a user turns off or on

the entries they will have to scroll through the image to make the changes happen.

3.2.1.11 PairwiseComparison

The PairwiseComparison (Figure 3.8) is a GUI that allows a user to select

the inputs for a pre-defined pairwise comparison display. The intention is to use a

predefined display description that tells how the display should be laid out, however

the user is asked for the algorithm, modality, image1 and image 2 they want to use

to do the comparison. Then the information will be passed to the Display Manager

www.manaraa.com

64

Figure 3.8: PairwiseComparison GUI. The PairwiseComparison GUI allows a user to
select an RDL file, the namespace, modality, image1 and image2. When the user hits
Ok, a 3x3 grid will appear allowing the user to evaluate the two images using the
difference.

to take care of creating the display. The display created is a 3x3 grid, with column 1

being image 1, column 2 being the difference of image 1 and image 2, column 3 being

image 2, row 1 being the transverse orientation of the views, row 2 being the sagittal

orientation of the views and row 3 being the coronal orientation of the views.

3.2.1.12 Panel

The Panel is an extension of wxPanel and is an individual cell in the grid in

the Display Manager. The panel takes care of managing the cell within the grid. This

www.manaraa.com

65

includes a view widget (see 2.16), a render window (that the view widget is rendered

in) and pop up menus (when the user right clicks in the panel). As well, the panel

makes calls to the Evaluator asking for the specified data to be displayed. The view

widget and data is specified in the Display Description.

3.2.1.13 PanelForm

The PanelForm is a GUI that changes the different items of the panel to the

users desire. To bring up PanelForm, either right click in the Panel and choose ’Edit

m widget’ or go to the menu option ’Edit->EditPanel..’, in the Display Manager,

and put in the row and column of the panel. The items are: the view widget, the

orientation, the inputs, linking widgets together, changing the color map, changing

the title and changing the font of the title. When the user has chosen all the options,

they hit Ok and the Panel creates everything the user chose.

3.2.1.14 VectorField

The VectorField is a view widget that allows a user to view a transformation

as a vector field. To create the vector field, a grid of points is created and then set

as the starting points, and then figure out the corresponding transformation points

which are set as the end points. The number of points used, the spacing and length

of the vector can be specified by the user.

3.2.1.15 Wipe

The Wipe view widget is implemented by extending NIREPvtkViewImage2D

to support two images and to use VTK’s Rectilinear Wipe Widget. VTK’s Rectilinear

www.manaraa.com

66

Figure 3.9: PanelForm GUI. The PanelForm GUI allows the user to make changes
to the current Panel. The user can can change the view/widget, the orientation, the
input images, the color map, the title of the Panel, and even the attributes of the
title.

www.manaraa.com

67

Figure 3.10: VectorField view widget. The VectorField shows what a transformation
looks like by using vectors to describe how the points in a grid are moved.

Wipe Widget is implemented as a 2x2 checkerboard and if a user wants they can grab

the divider between the checkerboard cells and wipe across the image. As with the

checkerboard, the wipe helps to see if the two image align properly. If the two image

align perfectly only one image will be displayed but if they do not align perfectly then

the differences can be seen as the user wipes across the image.

3.2.1.16 wxVtkImageFlip

The wxVtkImageFlip is a GUI that has been modified from vtkINRIA3D, to

get rid of memory issues, and is a dialog window that helps flipping and rotating a

3D Image to correct geometry problems. The GUI takes a VTK image as input and

pops up the 3 orientation views - sagittal, coronal and transverse. The image can

www.manaraa.com

68

Figure 3.11: Wipe view, of two images n01 and na01. This is showing when two
images align perfectly, the Wipe view widget will look like one image. The user is
allowed to wipe across to find where the two images do not align along the borders.

Figure 3.12: Wipe view widget of two images na01 and na02. This is showing two
images being evaluated, using the Wipe view widget, before registration. The user is
allowed to wipe across to find where the two images do not align along the borders.
As can be seen along the borders, the two images do not align perfectly.

www.manaraa.com

69

Figure 3.13: Wipe view widget of two images na01 and demons na01 def na02. This
is showing one image and one transformation being evaluated using the Wipe view
widget. The user is allowed to wipe across to find where the two images do not align
along the borders. As can be seen along the borders, the two images do not align
perfectly.

be flipped into the 3 different orientations. Rotations are possible by choosing an

acquisition flag. The modifications: inside of the function SetImage (vtkImageData*

image) the this->UpdateReslicer(); was moved and the this-¿Reslicer->Update(); was

added in so that the View1->SetImage would stop complaining about the Extents of

the images being 0,-1, etc. When the user hits ok, the image gets updated with the

changes.

3.3 Evaluator

The Evaluator is a creator of data and intermediate step for asking the Data

Manger for data. All the statistics and deformations are created in the Evaluator.

Before the Evaluator creates data, it asks the Data Manger if it has the data because

some deformations or statistics are based on previous data that may be in the Data

www.manaraa.com

70

Figure 3.14: Image Flip GUI. The Image Flip GUI allows users to change the acqui-
sition orientation of the image, flip the images based on I-S, R-L, and A-P.

Manger. Evaluator Commands are used to figure out what operations are to be

performed. See appendix for the full list of Evaluator Commands. The Evaluator

relies on supporting classes to help with the creation of statistics and deformations.

3.3.1 Supporting classes

Each of the following sections discusses the supporting classes that the Evalua-

tor uses. Each statistic and deformation has its own class which helps with integrating

new statistics and deformations into NIREP. All the deformations are in the gecLibs

library and all the statistics are in NIREP.

3.3.1.1 NIREPDiceCoefficient

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The Dice

Coefficient[11, 15, 5, 6] figures out the region of overlap by taking twice the intersection

www.manaraa.com

71

over the union of the segmented region of the deformed and target volumes.

The Dice Coefficient is computed using equation 2.11.

3.3.1.2 NIREPIntensityVariance

The Intensity Variance measures the similarity between a population of images

based on voxel intensity difference. In image registration applications driven by voxel

intensity features, the ideal registration should result in zero voxel intensity difference

between the registered images. The variance takes in a list of images that are used

to compute the variance.

The Intensity Variance is computed using equation 2.10.

3.3.1.3 NIREPInverseConsistencyError

The Inverse Consistency Error[2, 3, 1] measures the consistency of the corre-

spondence defined by forward and reverse transformations between two coordinate

systems. In an ideal case, the forward transformation should equal the inverse of

the reverse transformation. There are two type of Inverse Consistency Errors (ICE)

computed, equation 2.6 and equation 2.7.

3.3.1.4 NIREPRelativeOverlap

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The Relative

Overlap[12, 13, 8, 5, 6, 11] assesses how well two equally likely segmentations of the

same region of interest (ROI) agree or disagree with each other. Ideally, RO of all

www.manaraa.com

72

regions should be 1.0.

The relative overlap is computed using equation 2.12.

3.3.1.5 NIREPStatistics

The NIREPStatistics is an adapter class that all NIREP statistics classes in-

herit from. All classes should implement the function ComputeStatistic.

3.3.1.6 NIREPTargetOverlap

The alignment of objects, structures, organs, regions of interest (ROIs), etc.,

are a good indicator of how well two images are registered. These subvolumes are

defined by partitioning or segmenting an image into objects or ROIs. The Target

Overlap[11, 5, 6] assesses the intersection between two similarly labeled regions in S

and T divided by the volume of the region in T, where || indicates volume computed

as the number of voxels.

Assume Si and Ti are defined as the ith segmented region in the deformed

source and target volumes.

The target overlap in equation form:

TOi(Si, Ti) =
|Si ∩ Ti|

|Ti|
(3.1)

3.3.1.7 NIREPTransitivityError [3, 10, 7]

The Transitivity Error (TE) measures the consistency of the correspondence

defined by compositions of transformations. In an ideal case, the compositions of the

transformations should result in an identity transformation. The Transitivity Error

www.manaraa.com

73

is computed using equation 2.8.

3.4 Interface

The Interface is the first GUI presented to the user and initializer of the

Evaluator and DataManager. The GUI part displays the in memory data in a grid

layout and has menu options:

• File

– Load Resource Description List

– Save Resource Description List

– Edit Resource Description List

– Edit Display

– Quick View

– Load Display

– Exit

• Help

– Help

The Interface is responsible for initially loading in a display description, allow-

ing a user to create a display description and showing and allowing users to release

data. The Interface is the controller of the Evaluator and DataManager and when

the Interface is closed, NIREP ends.

www.manaraa.com

74

3.4.1 Supporting Classes

3.4.1.1 wxNirepApp

Is the startup file that wxWidgets requires. This will create the Interface which

is the first interactive screen the user will see. Also, this will display a splash screen

when NIREP is started. Finally, this file allows a user to double click an nd3 file

and have NIREP either start and create the display or if NIREP is already running,

create the display.

3.4.1.2 QuickView2

The QuickView2 is a GUI that allows a user to create a display without having

to manually write a Display Description. The user can change the number of rows

and columns, which will in turn modify the grid that is being displayed. The grid

that is being displayed corresponds to the final grid with the different views. From

there the user can go through each location in the grid and choose the view they

want displayed. When a user chooses a view, then the possible inputs to the grid are

displayed. The possible inputs are: load in files that the user wants or a creation of

evaluator commands. There is an advanced area that the user can make changes to

the RDL that is being created. When the user is ready, they click on Show to bring

up the newly created display.

3.5 Display Description

The Display Description contains the classes that pertain to the structure

of the display description. See the previous chapter for the picture of the structure.

www.manaraa.com

75

Some of the files that the Display Description reads in are XML files, which is actually

done by TinyXML.

• BasicDescription

– This class holds descriptive information about namespaces, algorithms,

and coordinate systems. Object of this class are filled with information by

parsing a resource description list. All non-required tags and their values

are stored in the attribute list.

• DisplayAttributes

– This class holds the attributes of a display. These would be the number of

rows, columns, locking the cursors, turning on and off the cursors, etc.

• DisplayDescription

– This class holds all the information that is in the display description file

and RDL. There are other classes which hold the specific information, but

this class holds references to those other classes. By holding the references,

we can pass this class around and have all the information about a display.

• EvaluatorList

– Evaluator is responsible for maintaining the evaluator list (human-readable),

stored as a map.

• ResourceDescription

www.manaraa.com

76

– This class holds information about the resources stored in the database.

Each resource must contain a unique resource id and a list of data descrip-

tions that describe the data (images, object maps, contours, landmarks,

etc.) associated with the resource. Optionally, a resource can contain a

list of non-required user defined attributes such as age, race, handedness,

etc.

• ResourceDescriptionList

– This class keeps a list of the data files available to be loaded into memory.

This class, lists the data descriptions of images, object maps, landmark

files, and contour files. This class creates a map of ResourceDescription

objects by parsing a resource description file.

• VariableList

– Stores the variables in the display description and replaces variables with

values.

• WidgetList

– Stores the widget commands in a vector. The location in the vector corre-

sponds to the location in the display grid. Also will be able to return the

widget type and the parameters of the widget command.

www.manaraa.com

77

CHAPTER 4

FUTURE AND SUMMARY

NIREP is not fully implemented which will require future features to be in-

corporated into the program. There are new statistics that will need to be added

in, new views, ranking of the different registration algorithms and new readers for

deformation files.

The addition of new statistics will be relatively easy because of the frame-

work built into NIREP. To add in new statistics, first create a new class that inherits

from NIREPEvaluatorTask. From there override the function Evaluate. Then, a

new evaluatorCommand name will be added into the map EvalCmd in NIREPDef-

initions.h. Also, in Evaluator.cpp, in the constructor, there needs to be an addition of

m_EvaluatorTaskList[EvalCmd["evaluatorCommandName"]] = new NewClass(this);}

where evaluatorCommandName will need to be changed to the evaluatorCommand

used in the addition to NIREPDefinitions.h and NewClass needs to be changed to

the class name of the new statistic.

To add in new visualization views, first create a new class that inherits from

NIREPvtkViewImage. The new file will probably have some changes done to SetIm-

age but it depends on what the new view is going to do. To be able to use the new

view, then inside Panel.cxx, in the function UseWidget, the if statement will have to

be modified to use the new view.

Currently NIREP does not have any ranking of the results of the evaluation

www.manaraa.com

78

methods. There are plans on different ways that the results of the evaluation methods

can be ranked. However, so far, none of the plans have been implemented in NIREP.

There was not enough time to add in graphs. There needs to be a study of

the different open source graph programs - wxWidgets graphs, VTK graphs, C++

library’s and independent programs. The best program will be able to be viewed

within the grid with all the different types of graphs.

With the help of CPack and NSIS there have been some installers created to

test how well NIREP can be distributed on Window’s machines. Well doing the tests,

it was found that some of the instructions feed to CPack needed to be changed. With

the addition of having dynamically created menu’s, it was found that there needed

to be files moved from the source directory into the installer. NIREP has been tested

for creating NIREP from source but to this point there have not been any tests for

binaries or packages for Unix or Macintosh.

NIREP started off as a concept to solve a problem, that was then designed and

finally implemented. The program has been created as a tool for users to evaluate

non-rigid image registration algorithms. The design of NIREP is conducive for the

add-on of evaluations, views and data. The implementation has met most of the

specifications using C++ and the libraries ITK, VTK, vtkINRIA3D and wxWidgets.

Finally, the project will continue on and be improved with the help of the community.

The evaluation of non-rigid image registration algorithms will benefit greatly with the

addition of NIREP.

www.manaraa.com

79

APPENDIX A

NIREP USER MANUAL

NIREP User Manual

1.0

Generated by Jeffrey A. Hawley

July 18, 2011

www.manaraa.com

80

A.1 Overview

Non-rigid Image Registration Evaluation Program (NIREP) is a standalone

image registration evaluation software that offers users high customizability of image

registration evaluations and presentation interface. NIREP offers standardized set of

image registration evaluation statistics and tools that serve as benchmarks for im-

age registration performance. Users of NIREP are able to configure the behavior and

arrangement of the software display such that comparisons of multiple image registra-

tion algorithms can be made simultaneously, both qualitatively and quantitatively.

Built-in capabilities to read and write images, transformations and supplementary

data such as landmarks and object maps, with the ability to perform advanced op-

erations such as deformations, Jacobians, inverse of transformations, relative overlap

and intensity variance, and the wide array of evaluation tools such as checkerboard,

wipe, object overlay, charts and graphs make NIREP a self-contained tool to perform

all that are necessary to evaluate image registration algorithms. Human-readable

configuration files that allow users to ”script” evaluation projects enable users to

batch process large evaluation projects. NIREP supports not only all major image

formats supported by ITK, but also supports AnalyzeTM Object Maps and various

transformation formats.

A.2 Background

Evaluating non-rigid image registration performance is a challenging task be-

cause of the lack of ground truth to correlate with. The current image registration

evaluation scheme either involves users to submit their registration results to the

www.manaraa.com

81

party responsible for evaluating the registrations, or have the evaluator perform all

tasks from registration to evaluation. Such schemes are cumbersome and inconvenient

because users often have to convert their data to the format required by the evalua-

tor, and because users do not have immediate access to evaluation results. Non-rigid

Image Registration Evaluation Project (NIREP) has been initiated to address this

challenge, giving access to researchers the most comprehensive analysis of non-rigid

image registration performance to date at the convenience of their own workstations,

through the NIREP software. Non-rigid Image Registration Evaluation Program

(also, NIREP from here on) is a publicly available software package that evaluates

image registration performance based on the image data, supplementary data (e.g.

landmarks, segmentations, etc.) and transformations generated by image registra-

tion algorithms. NIREP contains all necessary features to read and evaluate image

registration data, and output evaluation reports in different formats such as images,

charts and graphs. The public accessibility of NIREP not only standardizes image

registration evaluations, but also, effectively distributes workload to individual users.

A.3 System Requirements

The NIREP software is currently supported only on 64-bit Windows platforms

with at least 4GB of RAM. Images and transformations are read into memory during

runtime and thus have high memory requirements. For example, suppose you want to

display a source, target and transformed image of size 256x256x256. You will have to

load 8-bit source and target images which both require 16MB and a transformation

which will require 12 times this amount. In addition, you will compute a deformed

www.manaraa.com

82

image. For all this, the software requires at least 240MB of memory plus another

240MB of memory for overhead. Now, if you want to compare a second algorithm,

you will require double the amount of memory. In the future, the amount of over-

head storage will be dramatically reduced. Typically, you will want to perform more

advanced operations and have more comparisons on the screen. Therefore, having at

least 4GB of RAM is advisable.

A.4 Acquire NIREP software

Download the NIREP installer from www.nirep.org/download/. Default in-

stall location of the NIREP software is C:\Program Files\NIREP.

A.5 Before you use NIREP

The goal of using the NIREP software is to evaluate image registration perfor-

mance of one or more registration algorithms. First, you need to gather together the

image volumes that you want to use as your evaluation database. You can use your

own set of image data or download images from websites such as www.nirep.org. Keep

in mind the images should be in a file format that is supported by NIREP. NIREP

supports many different image formats. NIREP is written using ITK and therefore

supports all ITK supported data formats, plus additional formats (See Supported

Data Formats).

After gathering the data, you have to decide which image registration algo-

rithms you want to evaluate. This could be one that you wrote yourself or down-

loaded from external sources such as www.na-mic.org. Once the image registration

www.manaraa.com

83

algorithms are installed, registrations should be performed on the evaluation database

prepared in the previous step. Registrations in the forward and reverse direction (i.e.

source to target and target to source) are highly recommended because this enables

the evaluation of inverse consistency properties of the algorithms used. Furthermore,

registrations of all permutations of the evaluation database (e.g. 240 registrations for

a dataset of 16 images) are strongly recommended for transitivity analysis. NIREP

currently supports the following types of transformations: 1) displacement field im-

ages with scalar floating-point voxels containing displacements for each component of

the image space, 2) single displacement field image with vector-valued floating-point

voxels containing displacements for all components of the image space, 3) SICLE co-

efficient file, and 4) AIR warp file. The displacements can be in physical space units

(mm), image space units (voxels) and unit cube (1/voxels). In the future, NIREP

will support more varieties of transformation formats.

When NIREP is first started, the Interface screen is displayed. From here, a

user has a number of choices to display data. The user can choose to select menu

option File and choose between Load Display or Quick View to get to a Display or

the user can choose to select to Edit a Display or the user can choose to edit or

create an RDL file (see section blah for more information) by selecting Edit Resource

Description List. The Load Display option will load in an ND3 file (see section blah

for more information) and display what is described in the ND3 file. Quick View will

allow a user to create a Display quickly. (see section blah for more details)

www.manaraa.com

84

A.6 Quick View

A.7 Edit Resource Description List

The Resource Description List (RDL) is one of two files that NIREP requires

to evaluate image registration. The Edit Resource Description List tries to edit or

create an RDL based on what the user wants.

To get to the Edit Resource Description List, follow these steps:

1. If NIREP is not already started, start the NIREP software by double-clicking

on the NIREPApp.exe executable.

2. In the Interface window go to the menu option File -¿Edit Resource Description

List.

Now that we have started the Edit Resource Description List, here are some

sample steps that a user can perform.

For regular, atomic, non transformation files:

1. Select Datatype to be ”image.”

2. Click on Browse to select any one of the images in the evaluation database. The

file name will then appear in the Filename pattern 1 box, ready to be edited

for templating.

3. Suppose the image files for this evaluation database are named na01.hdr, na02.hdr,

..., na16.hdr. Then the Filename pattern 1 should be modified to ”naa.hdr,”

and you will notice the variable ”a” appearing in the Variable list.

www.manaraa.com

85

4. Type all variable values (e.g. ”01,02,03” for files named ”na01.hdr,” ”na02.hdr”

and ”na03.hdr”) into the Values box for Variable ”a.” This way, RDL entries

for all of the image data will be generated.

5. Now, click on Associated Variable for Coordinate System 0, and type in variable

”a” as the associated variable.

6. The next thing to do is to define the Default namespace for the image set. A

namespace defines the evaluation database association of each image data. For

this example, let’s name the default namespace as ”na0.”

7. The final entry to be completed is the Label, which is used to identify what the

image data contains (e.g. CT, MRI, ObjectMap, etc.) For this example, let’s

enter ”MRI” as the Label.

8. The Default DMID (DMID stands for Data Manager ID, which is a unique

ID within the NIREP software to associate with each image data) should be

”spatialdata(na0—a,MRI),” and everything is ready for RDL file generation. If

you click on Generate, a ViewRDL window will pop up and the output will look

like the following:

<?xml version="1.0" ?>

<ResourceDescriptionList namespace="na0">

<data_description label="mri" dmid="spatialdata(na0|01,mri)">

<coordinate_system index="0" ns="na0" id="01" />

www.manaraa.com

86

<algorithm index="0"></algorithm>

<filename index="0">na01.hdr</filename>

<datatype>image</datatype>

</data_description>

<data_description label="mri" dmid="spatialdata(na0|02,mri)">

<coordinate_system index="0" ns="na0" id="02" />

<algorithm index="0"></algorithm>

<filename index="0">na02.hdr</filename>

<datatype>image</datatype>

</data_description>

<data_description label="mri" dmid="spatialdata(na0|16,mri)">

<coordinate_system index="0" ns="na0" id="16" />

<algorithm index="0"></algorithm>

<filename index="0">na16.hdr</filename>

<datatype>image</datatype>

</data_description>

</ResourceDescriptionList>

9. Click on Save to save this RDL file to the directory where the image files are

location. For this example, the RDL file was saved in D:

Data

Databases

www.manaraa.com

87

NA0

resources.rdl.

10. Optionally, if you want to add additional entries to the RDL file (such as ob-

ject maps), you can repeat the process from step 2, changing the parameters

accordingly, and copying and pasting to the existing RDL file (just make sure

you do not have duplicate entries).

Next, you will need to generate RDL files for the transformations generated

by registration algorithms:

1. select Datatype to be ”transformation.”

2. Select the appropriate transformation Format from the pull-down menu.

3. If only Filename pattern 1: Click on Browse to select any one of the transforma-

tions/displacement images in the algorithm output directory. The file name will

then appear in the Filename pattern 1 box, ready to be edited for templating.

If Filename pattern 1-3: For each Filename pattern N, click on Browse to select

any one of the Nth component displacement images in the algorithm output

directory. The file name will then appear in the Filename pattern N box, ready

to be edited for templating.

4. Suppose the transformation files are named na01 To na02.coeff,

na02 To na01.coeff, , na15 To na16.coeff, na16 To na15.coeff. Then the File-

name pattern 1 should be modified to ”naa To nab.coeff,” and you will notice

variables ”a” and ”b” appearing in the Variable list.

www.manaraa.com

88

5. Type all variable values (e.g. ”01,02,03” for transformations named

”na01 To na02.coeff,” ”na02 To na03.coeff,” etc.) into the Values box for Vari-

ables ”a” and ”b.” This way, RDL entries for all permutations of transforma-

tions will be generated. To prevent identity map transformation entries (e.g.

na01 To na01.coeff) from being inserted into the RDL, check Remove Identity

Maps.

6. Now, click on Associated Variable for Coordinate System 0, and type in the

variable name (e.g. ”a”) associated with the first (i.e. source) coordinate sys-

tem.

7. Then, click Add Coordinate to add Coordinate System 1, and type in the vari-

able name (e.g. ”b”) associated with the second (i.e. target) coordinate system.

8. The next thing to do is to define the Default namespace associated with the

transformation set. A namespace defines the evaluation database association of

each image data. For this example, lets name the default namespace as ”na0.”

The display is the heart of displaying data to the user. Within the display

are individual panels that control the specific type of widgets that the user displays.

Currently each widget either displays a 2 dimensional or a slice of a 3 dimensional

image or text. The types of widgets that a user can display are:

Rectilinear wipe widget

• Inputs: image1, image2, title

www.manaraa.com

89

• Description: Displays two images in a 2x2 checkerboard style, with vertical and

horizontal lines that can be wiped across the images.

Checkerboard

• Inputs: image1, image2, title

• Description: Displays two images in a checkerboard style, with scrolls around

the image to increase or decrease the number of tiles in the row(s) or column(s).

The top and bottom scrolls increase or decrease the number of tiles for the

columns. The scrolls on the left and right increase or decrease the number of

tiles for the rows.

View

• Inputs: image, title

• Description: Displays an image (see blah for the types of images).

Objectmap

• Inputs: objectmap, title

• Description: Displays an Analyze Object Map.

overlayObjectMap

• Inputs: image, objectmap, title

• Description: Displays an Analyze Object Map overlaid on top of an image.

www.manaraa.com

90

overlayImage

• Inputs: image1, image2, title

• Description: Displays image1 overlaid on top of image2.

relativeOverlap

• Inputs: objectmap1, objectmap2, title

• Description: Displays the result of taking the relative overlap of objectmap1

with objectmap2.

relativeOverlapTextWidget

• Inputs: objectmap1, objectmap2, title

• Description: Displays the text result, sorted by objects, of taking the relative

overlap of objectmap1 with objectmap2.

inverseConsistencyTextWidget

• Inputs: inverseConsistencyImage, objectmap, title

• Description: Displays the text result, sorted by objects, of taking the inverse

consistency of the inverseConsistencyImage.

transitivityErrorTextWidget

• Inputs: transitivityErrorImage, objectmap, title

www.manaraa.com

91

• Description: Displays the text result, sorted by objects, of taking the transitivity

error of the transitivityErrorImage.

varianceTransformText

• ” Inputs: referenceImage, images, label, algorithm, title

• Description: Displays the text result, sorted by objects, of taking the trans-

formation of the collection of images and finding the variance between them.

The input ”images” is a collection of images in the following syntax: ”[im-

age1;image2:image5;image8]”. To further explain the collection, there must be

”[]” and between them can either be the single name of an image or a range or

images which is delimited by ”:”

varianceImageText

• ” Inputs: images, label, title

• Description: Displays the text result, sorted by objects, of finding the variance of

the input ”images”. The input ”images” is a collection of images in the following

syntax: ”[image1;image2:image5;image8]”. To further explain the collection,

there must be ”[]” and between them can either be the single name of an image

or a range or images which is delimited by ”:”

blankWidget

• Inputs:

• Description: Displays a black widget.

www.manaraa.com

92

All widgets have the same commands which are:

If the user wants to make global or in some cases individual changes to the

display, they can use either the menu options or right clicking in each panel. The

following are the menu options:

• File

– Open NIREPDisplay Description

∗ Description: Opens an ND3 file and display what is specified in the

ND3 file.

– Open new window

∗ Description: Opens a new Display and leaving the current display

alone.

– Close

∗ Description: Closes the current display.

• Edit

– Edit Panel...

∗ Description: Pops open a window that asks the user which panel they

wish to edit and then brings up the appropriate editing window for

the specified panel.

– Edit Display Variables...

www.manaraa.com

93

∗ Description: Pops open a window that displays the current variables

being used by the ND3 file and allows a user to change the value of

the variables on the fly and will update the current display with the

changes. See blah for further information about variables in an ND3

file.

– Add Row

∗ Description: Adds a row of blankWidget’s to the end of the current

display.

– Add Column

∗ Description: Adds a column of blankWidget’s to the end of the current

display.

– Turn Off Titles

∗ Description: Makes the titles disappear and the previously vacated

space is filled by expanding the widgets.

– Turn On Titles

∗ Description: Makes the titles appear and contrast the widgets to make

room for the titles.

• View

– Show Cursors

∗ Description: Turns on the vertical and horizontal cursors that are in

the widgets.

www.manaraa.com

94

– Hide Cursors

∗ Description: Turns off the vertical and horizontal cursors that are in

the widgets.

• Cursor Lock

– Lock All

∗ Description: Locks all the panels together. For example when a user

clicks in one widget, the location will be distributed to the other panels

and be updated. Another example, when a user is changing the slice

of a widget, all the other widgets will switch to the user selected slice.

– Lock Rows

∗ Description: For each row in the display, lock all the panels within

that row. See Lock All for what locking does.

– Lock Columns

∗ Description: For each column in the display, lock all the panels within

that column. See Lock All for what locking does.

– Unlock All

∗ Description: Unlocks the panels so that each panel is the only panel

that will be updated when a user does something in the panel.

– Unlock Rows

∗ Description: Unlocks the rows so that each panel is the only panel

that will be updated when a user does something in the panel.

www.manaraa.com

95

– Unlock Columns

∗ Description: Unlocks the columns so that each panel is the only panel

that will be updated when a user does something in the panel.

• Pairwise Comparison

– Single Algorithm Comparison

∗ Description: A pre-defined ND3 file that the user is able to change

the variables to the images that the user wants displayed. A single

algorithm comparison is a 3x3

– Absolute Difference

– Window Wipe

– Checkerboard

– R, Y, G fusion

– Relative Overlap

• Groupwise Comparison

The following are the right click menu options:

• Edit m widget

– Description: Allows the widget to be changed, change the color mapping,

change the inputs

www.manaraa.com

96

• Left Click

– Pointer

∗ Description: Allows the user to click on an image to gather the pixel

value, the pixel location and also allows the user to scroll through the

various slices of the image.

– Level/Window

∗ Description: Allows the user to changes the level/window of the image

by scrolling up or down or left or right. The level/window is a way to

adjust the contrast of the image.

– Zoom

∗ Description: Allows the user to zoom in and out of the image. As well,

the user can press shift and move the image around.

Also, if an object map is one of the inputs to the widget then:

• Object Map

– Description: Displays the individual object information.

NIREP largely consists of four main modules: Interface, Display Manager,

Evaluator and Data Manager. Of the four, three of the modules,Display Manger,

Evaluator and DataManger, are controlled using two different configuration files:

NIREP Display Description Document (ND3) and Resource Description List (RDL).

www.manaraa.com

97

The ND3 file is responsible for controlling the behavior of the three components of

NIREP, and the human-readable file typically looks like the following:

Begin ResourceDescriptionList

Databases\NA0.2\resources.rdl

Transformations\NA0.2\AIR5_Param1\air5.rdl

Transformations\NA0.2\SICLE_Param1\sicle.rdl

Transformations\NA0.2\BRAINSDemons_Param1\demons.rdl

End ResourceDescriptionList

Begin DisplayAttributes

columnSize(2)

rowSize(2)

LockAll()

End DisplayAttributes

Begin VariableList

image1 = na0|008

image2 = na0|014

modality = MRI

End VariableList

Begin WidgetList

www.manaraa.com

98

W1,1 = view(_image1,Image ${image1})

W1,2 = checkerboard(_image1,_image2,Images ${image1} and ${image2})

W2,1 = view(_image2,Image ${image2})

W2,2 = wipe(_image1,_image2,Images ${image1} and ${image2})

End WidgetList

Begin EvaluatorList

_image1 = SpatialData(image1,modality)

_image2 = SpatialData(image2,modality)

_A3 = Transformation(image1,image2,SICLE_Param1)

_A20 = Transformation(image2,image1,SICLE_Param1)

_A7 = SpatialData(image1,OBJMAP)

_A8 = SpatialData(image2,OBJMAP)

_A9 = Jacobian(_A3)

_A10 = TransformImage(_image1,_A3)

_A27 = InverseConsistencyErrorImage(_A20,_A3,inv)

_A29 = InverseConsistencyErrorImage(_A3,_A20,comp)

_A30 = InverseConsistencyErrorImage(_A20,_A3,comp)

End EvaluatorList

The ND3 file is divided up into five different segments:

1. Resource Description List

2. Display Attributes

www.manaraa.com

99

3. Variable List

4. Widget List

5. Evaluator List

A.8 Resource Description List

This section is demarcated by Begin ResourceDescriptionList and End Re-

sourceDescriptionList operatives. Each line in this section lists relative paths to Re-

source Description List files which provide information about how data will be read

into NIREP.

A.9 Display Attributes

This section is denoted by Begin DisplayAttributes and End DisplayAttributes.

There are seven Display Attribute commands that can be specified:

1. RowSize(int r) Row size of the NIREP Display Widget grid. e.g. RowSize(3)

2. ColumnSize(int c) Column size of the NIREP DisplayWidget grid. e.g. Column-

Size(3)

3. Lock(Widget w1; Widget w2; ; Widget wN) Locks behaviors of specified wid-

gets. e.g. Lock(W1,1;W1,2;W1,3)

4. CursorLocation(Widget w; int x; int y) Default cursor location of specified

widget. e.g. CursorLocation(W1,1;50;128)

www.manaraa.com

100

5. Slice(Widget w; int z) Default image slice location of specified widget. e.g.

Slice(W2,2;150)

6. Orientation(Widget w; Orientation o) Default orientation of specified widget.

e.g. Orientation(W3,1;TRANSVERSE)

7. LockAll() Locks all Display widgets.

RowSize() and ColumnSize() are required while the remaining commands are

optional.

A.10 Variable List

This section is specified between Begin VariableList and End VariableList op-

eratives. The variables that will be shared between the Widget List and the Evaluator

List will be specified on each line, following a variable name = variable format. The

variables can be changed dynamically during runtime in NIREP, making mass switch

of variables simple (e.g. simultaneously changing the display of multiple widgets with

a single variable change).

A.11 Widget List

This section is defined between Begin WidgetList and End WidgetList. Each

line of the Widget List specifies the behavior of each widget, in the following format:

widget name = widget function(vars). Widget names take the form Wr,c, where r

and c are row and column indices (e.g. W1,1 for first row and column). The following

is the list of NIREP Display Widget functions:

www.manaraa.com

101

1. View(image, title) 2D image viewer that displays the image specified in the

variable image, with widget title title. The image data can be viewed from

three different image orientations: Sagittal, Coronal and Transverse.

image - Input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. View(A1, Image 001 MRI) View(img, Image $image $modality)

2. Checkerboard(image1, image2, title) Displays two images in a checkerboard grid

for comparison. All three image orientations supported by the View() widget

are supported.

image1 - First input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. Checkerboard(A1, A2, Checkerboard Image 001 CT & Image 002 CT)

www.manaraa.com

102

3. Wipe(image1, image2, title) Displays two images in a wipe widget for compari-

son. All three image orientations supported by the View() widget are supported.

image1 - First input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image or ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. Wipe(A1, img, Wipe Image 001 CT & Image imagemodality)

4. ObjectMap(objmap, title) 2D object map viewer with colorized object regions.

All three image orientations supported by the View() widget are supported.

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. ObjectMap(A3, ObjectMap 001)

5. OverlayObjectMap(image, objmap, title) 2D image viewer with colorized object

map overlay. All three image orientations supported by the View() widget are

supported.

www.manaraa.com

103

image - Input image variable. The variable should either be defined in the

Evaluator List or the Variable List, and should point to Image data.

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. OverlayObjectMap(A1, A3, ObjectMap Overlay 001 CT)

6. OverlayImage(image1, image2, title) 2D image viewer with second image over-

lay. All three image orientations supported by the View() widget are supported.

image1 - First input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image data.

image2 - Second input image variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to Image data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. OverlayImage(A1, A2, Image Overlay 001 CT 002 CT)

7. RelativeOverlap(objmap1, objmap2, title) 2D viewer showing the relative over-

lap difference between two object maps. All three image orientations supported

by the View() widget are supported.

objmap1 - First input object map variable. The variable should either be defined

www.manaraa.com

104

in the Evaluator List or the Variable List, and should point to ObjectMap data.

objmap2 - Second input object map variable. The variable should either be de-

fined in the Evaluator List or the Variable List, and should point to ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. RelativeOverlap(A3, A4, Relative Overlap 001 002)

8. RelativeOverlapTextWidget(objmap1, objmap2, title) Text widget showing the

relative overlap difference between two object maps per ROI.

objmap1 - First input object map variable. The variable should either be defined

in the Evaluator List or the Variable List, and should point to ObjectMap data.

objmap2 - Second input object map variable. The variable should either be de-

fined in the Evaluator List or the Variable List, and should point to ObjectMap

data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. RelativeOverlapTextWidget(A3, A4, Relative Overlap 001 002)

9. InverseConsistencyTextWidget(NEED TO REVISE INPUT ARGUMENTS, ob-

jmap, title) Text widget showing the maximum, minimum and average inverse

consistency error of forward and reverse transformations per ROI.

www.manaraa.com

105

NEED TO REVISE INPUT ARGUMENTS

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. InverseConsistencyTextWidget(NEED TO REVISE INPUT ARGUMENTS,

ICE 001 002)

10. TransitivityErrorTextWidget(NEED TO REVISE INPUT ARGUMENTS, ob-

jmap, title) Text widget showing the maximum, minimum and average transi-

tivity error of multiple transformations per ROI.

NEED TO REVISE INPUT ARGUMENTS

objmap - Input object map variable. The variable should either be defined in

the Evaluator List or the Variable List, and should point to ObjectMap data.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. TransitivityErrorTextWidget(NEED TO REVISE INPUT ARGUMENTS,

TE 001 002 003)

11. VarianceTransformText(refimage, images, label, algorithm, title) Text widget

showing the maximum, minimum and average intensity variance of images trans-

formed to the reference coordinate system per ROI.

www.manaraa.com

106

refimage - Input reference image coordinate system variable. All other images

will be transformed to this reference coordinate system for IV computation.

The variable should either be defined in the Variable List or explicitly specified.

images - Input image coordinate systems variable. Multiple images are speci-

fied in this variable to be transformed to the reference coordinate system. This

variable is delineated by [and] braces, with image coordinate systems specified

inside with combinations of the following: 1) individual coordinate systems tok-

enized by semi-colons (e.g. [001;002;004;005;006]); 2) ranges of images specified

by colons (e.g. [001:002;004:006]. Note this specifies the same set of image coor-

dinate systems as the previous example). The variable should either be defined

in the Variable List or explicitly specified.

label - Image label variable. This variable specifies which images for the given

image coordinate systems should be used for IV computation (e.g. MRI). The

variable should either be defined in the Variable List or explicitly specified.

algorithm - Algorithm variable. This variable specifies which image registration

algorithm is to be used to transform the images to the reference image coor-

dinate system. The variable should either be defined in the Variable List or

explicitly specified.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. VarianceTransformText (001,[002;004;006:016],MRI,SICLE,Intensity Vari-

www.manaraa.com

107

ance SICLE)

12. VarianceImageText(images, label, title) Text widget showing the maximum,

minimum and average intensity variance of specified images per ROI.

images - Input image coordinate systems variable. Multiple images are speci-

fied in this variable and all comparisons are done with respect to the first image

coordinate system. This variable is delineated by [and] braces, with image

coordinate systems specified inside with combinations of the following: 1) indi-

vidual coordinate systems tokenized by semi-colons (e.g. [001;002;004;005;006]);

2) ranges of images specified by colons (e.g. [001:002;004:006]. Note this spec-

ifies the same set of image coordinate systems as the previous example). The

variable should either be defined in the Variable List or explicitly specified.

label - Image label variable. This variable specifies which images for the given

image coordinate systems should be used for IV computation (e.g. MRI). The

variable should either be defined in the Variable List or explicitly specified.

title - Title of the widget. Variables from the Variable List can be used using

the $var operative.

e.g. VarianceImageText ([001;002;004;006:016],MRI,Intensity Variance)

13. BlankWidget() What it says.

www.manaraa.com

108

A.12 Evaluator List

This section is defined between Begin EvaluatorList and End EvaluatorList.

Each line of the Evaluator List specifies evaluator functions, some of which may

not be in use by any of the widgets, in the following format: evaluator var =

evaluator function(vars). The following is the list of NIREP Evaluator func-

tions:

(a) SpatialData(cs id, label)

(b) Transformation(cs1 id, cs2 id, algorithm)

(c) Diff(image1, image2)

(d) XDisp(transform)

(e) YDisp(transform)

(f) ZDisp(transform)

(g) Jacobian(transform)

(h) TransformImage(image, transform, interpolation) [interpolation currently

not implemented]

(i) InvertTransformation(transform)

(j) InverseConsistencyErrorImage(fwd transform, rev transform, method)

(k) TransitivityErrorImage(transform12, transform23, transform31, method)

(l) IntensityVarianceTramsform(refimage, images, label, algorithm)

(m) IntensityVarianceImage(images, label)

www.manaraa.com

109

A.13 Data

A.14 Transformation

A transformation between two coordinate systems is a function that deforms

and maps each point in one coordinate system to another coordinate system grid.

That means that a transformation is derived from at least two different coordinate

systems and an algorithm. NIREP is able to deform coordinate systems but in order

to do that, NIREP needs to load in transformation files (either displacement field

image(s) or specialized transformation files) that were generated by image registration

algorithm(s). There are two different ways to load in transformation files, one is to

load the transformation files by hand each time NIREP is run; the other way is to

create an XML file that holds a list of transformation file locations and load that file

each time NIREP is run. The second option was chosen partially because databases

of transformations will be handed out and have people test out NIREP and partially

the time spent creating a file and using it over and over is less than always loading in

the exact transformation each time. A benefit that was found from using XML files

to tabulate transformation data is that the user is able to place in file notes and other

information about the transformation(s). Another benefit is that the user is able to

group transformations in whatever manner the user wants to.

The implementation that NIREP uses is composed of the following XML lines.

<transform_description dmid = "Transformation(na0|001,na0|002,

www.manaraa.com

110

SICLE_NO_ICC)">

<coordinate_system index = "0" ns = "na0" id="001"/>

<coordinate_system index = "1" ns = "na0" id="002"/>

<algorithm>SICLE_NO_ICC</algorithm>

<filename>na01_na02.coeffs</filename>

<datatype>TRANSFORMATION</datatype>

<format> SICLE_COEFF </format>

<transformation_units>IMAGE_SPACE</transformation_units>

</transform_description>

Each transformation data entry starts with the tag transform_description

along with the attribute dmid. The dmid is a unique ID that identifies the transfor-

mation data within NIREP.

Inside the tag <transform_description>, in no particular order, are the data

description tags: coordinate_system, algorithm, filename, datatype, format and

transformation_units.

The <coordinate_system> tag describes the coordinate systems that are as-

sociated with the transformation data. Each coordinate system will have an ”index”

attribute that lets NIREP know the sequence of coordinate systems used to create

the transformation. The starting coordinate system has index 0 and every subsequent

index is incremented by one. Each coordinate system belongs to a data namespace

which is described by the ”ns” (namespace) attribute and the ”id” attribute identifies

one of the coordinate systems in the namespace.

www.manaraa.com

111

The <algorithm> tag labels the algorithm that was used to generate the trans-

formation.

The <filename> tag is a relative path location to the data on disk. An optional

attribute is index, which defines the order of the filenames.

The <datatype> tag is a NIREP defined value. For all transformations use

Transformation.

The <format> tag is a NIREP defined value that defines the type of algorithm

that NIREP will use to deform the transformation. The values are: DISPLACEMENT,

DISPLACEMENT3, SICLE_COEFF, and AIR5. If displacement3 is used, there should be

3 filename tags.

The <transformation_units> is a NIREP defined value that defines what

units the transformation file is stored as. The values are: UNIT_CUBE, PHYSICAL_SPACE

and IMAGE_SPACE.

Moving on to the format of the algorithm descriptions, which is the notes that

users will place in the file. The algorithm description is composed of the following

lines

<algorithm_description id="AIR5">

<description>AIR5 algorithm</description>

</algorithm_description>

The descriptions are quite simple and consist of the tag algorithm_description with

an attribute id that corresponds to the algorithm tag in the transform_description

www.manaraa.com

112

tag. There can be many algorithm_descriptions depending on how many algo-

rithms the user places in the RDL.

NIREP supports the following list, mostly supported by ITK

(http://www.vtk.org/Wiki/ITK File Formats).

A.14.1 3D image file formats:

Analyze 7.5TM, DICOM, GDCM, GE, Gipl, IPL, MetaImage, NIfTI, Nrrd,

Raw, Siemens Vision, Stimulate, VTK Structured Points

Analyze Object Map

A.14.2 Transformation file formats:

MetaImage SICLE coefficients (.coeff) AIR 5 warp (.warp)

A.14.3 Requirements

• Images, supplementary data and transformations should have same orientation,

origin and voxel spacing.

• Transformations can be defined in physical space, image space or unit cube

space.

www.manaraa.com

113

REFERENCES

[1] G. E. Christensen. Consistent linear-elastic transformations for image matching.
In A. Kuba and M. Samal, editors, Information Processing in Medical Imaging,
LCNS 1613, pages 224–237, Berlin, June 1999. Springer-Verlag.

[2] G. E. Christensen and H. J. Johnson. Consistent image registration. IEEE Trans.

Med. Imaging, 20(7):568–582, July 2001.

[3] G. E. Christensen and H. J. Johnson. Invertibility and transitivity analysis for
nonrigid image registration. Journal of Electronic Imaging, 12(1):106–117, Jan.
2003.

[4] G. E. Christensen, R. D. Rabbitt, M. I. Miller, S.C. Joshi, U. Grenander, T.A.
Coogan, and D.C. Van Essen. Topological properties of smooth anatomic maps.
In Y. Bizais, C. Braillot, and R. Di Paola, editors, Information Processing in

Medical Imaging, volume 3, pages 101–112. Kluwer Academic Publishers, Boston,
June 1995.

[5] William R. Crum, Oscar Camara, and Derek L. G. Hill. Generalized overlap
measures for evaluation and validation in medical image analysis. IEEE Trans.

Med. Imaging, 25(11):1451–1461, November 2006.

[6] W.R. Crum, O. Camara, D. Rueckert, K.K Bhatia, M. Jenkinson, and D.L.G.
Hill. Generalized overlap measures for assessment of pairwise and groupwise
image registration and segmentation. In MICCAI 2005, pages 99–106. Springer,
2005.

[7] Xiujuan Geng, Dinesh Kumar, and Gary E. Christensen. Transitive inverse-
consistent manifold registration. In Gary E. Christensen and Milan Sonka, ed-
itors, Information Processing in Medical Imaging, volume LNCS 3564, pages
468–479, Berlin, July 2005. Springer-Verlag.

[8] Guido Gerig, Matthieu Jomier, and Miranda Chakos. Valmet: A new validation
tool for assessing and improving 3d object segmentation. In Wiro J. Niessen and
Max A. Viergever, editors, MICCAI 2001, volume LNCS 2208, pages 516–528.
Springer, 2001.

[9] Tristan Glatard, Xavier Pennec, and Johan Montagnat. Performance evaluation
of grid-enabled registration algorithms using bronze-standards. InMICCAI 2006,
pages 152–160. Springer, 2006.

www.manaraa.com

114

[10] H. J. Johnson and G. E. Christensen. Consistent landmark and intensity-based
image registration. IEEE Trans. Med. Imaging, 21(5):450–461, 2002.

[11] Arno Klein, Jesper Andersson, Babak A. Ardekani, John Ashburner, Brian
Avants, Ming-Chang Chiang, Gary E. Christensen, D. Louis Collins, James Gee,
Pierre Hellier, Joo Hyun Song, Mark Jenkinson, Claude Lepage, Daniel Rueck-
ert, Paul Thompson, Tom Vercauteren, Roger P. Woods, J. John Mann, and
Ramin V. Parsey. Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration. NeuroImage, 46(3):786–802, July 2009.

[12] Joo Song, Gary Christensen, Jeffrey Hawley, Ying Wei, and Jon Kuhl. Evaluating
image registration using nirep. In Bernd Fischer, Benot Dawant, and Cristian
Lorenz, editors, Biomedical Image Registration, volume 6204 of Lecture Notes in

Computer Science, pages 140–150. Springer Berlin / Heidelberg, 2010.

[13] Ying Wei, Gary E. Christensen, Joo Hyun Song, David Rudrauf, Joel Bruss,
Jon G. Kuhl, and Thomas J. Grabowski. Evaluation of five non-rigid image
registration algorithms using the nirep framework. volume 7623, page 76232L.
SPIE, 2010.

[14] Jay West, J. Michael Fitzpatrick, et al. Comparison and evaluation of retrospec-
tive intermodality brain image registration techniques. J. Comp. Asst. Tomog.,
21(4):554–566, 1997.

[15] Alex P. Zijdenbos, Benoit M. Dawant, Richard A. Margolin, and Andrew C.
Palmer. Morphometric analysis of white matter lesions in mr images: Method
and validation. IEEE Transactions on Medical Imaging, 13(4):716–724, Decem-
ber 1994.

	Software architecture of the non-rigid image registration evaluation project
	Recommended Citation

	C:/Papers/papers/Hawley_MSThesis/thesis.dvi

